苯并硫氰-羧甲基纤维素复合薄膜的制备及其抗菌性能

IF 3.1 4区 工程技术 Q2 POLYMER SCIENCE
Long Wang, Chaojie Li, Xue Li, Zi'ang Xia, Jingxue Yang, Baoming Xu, Heng Zhang
{"title":"苯并硫氰-羧甲基纤维素复合薄膜的制备及其抗菌性能","authors":"Long Wang, Chaojie Li, Xue Li, Zi'ang Xia, Jingxue Yang, Baoming Xu, Heng Zhang","doi":"10.1002/pat.6486","DOIUrl":null,"url":null,"abstract":"Cellulose has a wide range of uses. It could be modified to create cellulose‐based hydrophobic materials and cellulose‐based conductive and stable flexible films, but it did not have antibacterial properties and was susceptible to bacterial erosion. In order to improve the utilization of cellulose materials and broaden the application of cellulose materials, cellulose could be given certain antibacterial properties by combining it with antimicrobial agents. This study focused on creating an organic antimicrobial agent, Benzothiocyanine (TCMTB), from CH<jats:sub>2</jats:sub>ClBr, and then developing a TCMTB‐CMC composite antimicrobial film by combining TCMTB with CMC. The successful synthesis of TCMTB was confirmed through NMR hydrogen spectroscopy testing. By varying the proportions of TCMTB in CMC, three types of composite antimicrobial cellulose film were produced. The study also assessed the impact of TCMTB on the mechanical strength of CMC film and tested the antimicrobial effectiveness of the composite film using the plate counting method. Results showed that the composite film had high inhibition rates, with 96.2% against Escherichia coli and 98.6% against Staphylococcus aureus. To establish a theoretical foundation for its use in seed encapsulation, leather preservation, and other applications.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"23 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of benzothiocyanine‐carboxymethyl cellulose composite film and its antimicrobial properties\",\"authors\":\"Long Wang, Chaojie Li, Xue Li, Zi'ang Xia, Jingxue Yang, Baoming Xu, Heng Zhang\",\"doi\":\"10.1002/pat.6486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellulose has a wide range of uses. It could be modified to create cellulose‐based hydrophobic materials and cellulose‐based conductive and stable flexible films, but it did not have antibacterial properties and was susceptible to bacterial erosion. In order to improve the utilization of cellulose materials and broaden the application of cellulose materials, cellulose could be given certain antibacterial properties by combining it with antimicrobial agents. This study focused on creating an organic antimicrobial agent, Benzothiocyanine (TCMTB), from CH<jats:sub>2</jats:sub>ClBr, and then developing a TCMTB‐CMC composite antimicrobial film by combining TCMTB with CMC. The successful synthesis of TCMTB was confirmed through NMR hydrogen spectroscopy testing. By varying the proportions of TCMTB in CMC, three types of composite antimicrobial cellulose film were produced. The study also assessed the impact of TCMTB on the mechanical strength of CMC film and tested the antimicrobial effectiveness of the composite film using the plate counting method. Results showed that the composite film had high inhibition rates, with 96.2% against Escherichia coli and 98.6% against Staphylococcus aureus. To establish a theoretical foundation for its use in seed encapsulation, leather preservation, and other applications.\",\"PeriodicalId\":20382,\"journal\":{\"name\":\"Polymers for Advanced Technologies\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers for Advanced Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pat.6486\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6486","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

纤维素用途广泛。纤维素可以通过改性制成纤维素基疏水材料和纤维素基导电稳定柔性薄膜,但它不具有抗菌性能,容易被细菌侵蚀。为了提高纤维素材料的利用率,扩大纤维素材料的应用范围,可以通过将纤维素与抗菌剂结合,赋予纤维素一定的抗菌性能。本研究的重点是利用 CH2ClBr 制备有机抗菌剂--苯并硫氰胺(TCMTB),然后将 TCMTB 与 CMC 结合,开发 TCMTB-CMC 复合抗菌膜。通过核磁共振氢谱测试证实了 TCMTB 的成功合成。通过改变 TCMTB 在 CMC 中的比例,制备出三种类型的复合抗菌纤维素薄膜。研究还评估了 TCMTB 对 CMC 薄膜机械强度的影响,并采用平板计数法测试了复合薄膜的抗菌效果。结果表明,复合薄膜的抑菌率很高,对大肠杆菌的抑菌率为 96.2%,对金黄色葡萄球菌的抑菌率为 98.6%。为其在种子封装、皮革防腐等方面的应用奠定理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation of benzothiocyanine‐carboxymethyl cellulose composite film and its antimicrobial properties
Cellulose has a wide range of uses. It could be modified to create cellulose‐based hydrophobic materials and cellulose‐based conductive and stable flexible films, but it did not have antibacterial properties and was susceptible to bacterial erosion. In order to improve the utilization of cellulose materials and broaden the application of cellulose materials, cellulose could be given certain antibacterial properties by combining it with antimicrobial agents. This study focused on creating an organic antimicrobial agent, Benzothiocyanine (TCMTB), from CH2ClBr, and then developing a TCMTB‐CMC composite antimicrobial film by combining TCMTB with CMC. The successful synthesis of TCMTB was confirmed through NMR hydrogen spectroscopy testing. By varying the proportions of TCMTB in CMC, three types of composite antimicrobial cellulose film were produced. The study also assessed the impact of TCMTB on the mechanical strength of CMC film and tested the antimicrobial effectiveness of the composite film using the plate counting method. Results showed that the composite film had high inhibition rates, with 96.2% against Escherichia coli and 98.6% against Staphylococcus aureus. To establish a theoretical foundation for its use in seed encapsulation, leather preservation, and other applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers for Advanced Technologies
Polymers for Advanced Technologies 工程技术-高分子科学
CiteScore
6.20
自引率
5.90%
发文量
337
审稿时长
2.1 months
期刊介绍: Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives. Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century. Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology. Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信