{"title":"Comparative Analysis of Reverse Degree and Entropy Topological Indices for Drug Molecules in Blood Cancer Treatment through QSPR Regression Models","authors":"","doi":"10.1080/10406638.2023.2271648","DOIUrl":"10.1080/10406638.2023.2271648","url":null,"abstract":"<div><div>The topological indices provide quantitative structural characteristics of drug molecules that can be utilized to predict or establish correlations with the biological activity, physicochemical properties, and toxicity of the molecules. Such studies play a crucial role in the initial stages of drug development by aiding in the identification and optimization of potential drug candidates and providing cost-effective techniques for experimental studies. Cancer, a multifaceted disease, can originate in any part of the body due to various factors, including genetic mutations, environmental toxins, and lifestyle choices. Blood cancer, encompassing malignancies affecting the blood, bone marrow, and lymphatic systems, is the focus of this research paper. The current study investigates a comprehensive set of drugs employed in blood cancer treatment, including clofarabine, mercaptopurine, olutasidenib, glasdegib, gliteritinib, zanubrutinib, chlorambucil, ibrutinib, bosutinib, hydroxyurea, cyclophosphamide, doxorubicin, daunorubicin, ivosidenib, prednisone, busulfan, omacetaxine mepesuccinate, and asciminib. By conducting a thorough analysis of these drugs, we acquire valuable insights into their molecular properties, which are crucial for predicting their behavior and efficacy in blood cancer treatment. We have devised QSPR models by leveraging the reverse degree and entropy topological indices. Our proposed QSPR models are compared with existing degree-based models, emphasizing the superior effectiveness of our approach.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135618480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rate of Horizontal Spread of Fluorene in a Sandy Loam under Natural Environment","authors":"","doi":"10.1080/10406638.2023.2276240","DOIUrl":"10.1080/10406638.2023.2276240","url":null,"abstract":"<div><div>Rate of horizontal movement of a pollutant such as polycyclic aromatic hydrocarbons in soil plays a major role in spread of pollutants in the segments of the environment. However, the study regarding this aspect is not widely reported. In the present work, the rate of horizontal spread of Fluorene in soil is determined in an experiment spread over a year under natural environment. Known amount of the hydrocarbon was added to a soil at a particular point, extraction of the same was done later on at definite time interval at definite distances from the point of application and quantitative determination was done by HPLC analysis of the extract. Eleven number of important physico-chemical parameters of the soil sample were determined/calculated in order to know the quality of the soil. The values of parameters are in agreement to the characteristics of a good soil. The experimental soil is a mild acidic sandy loam. It has been found that one-year time is sufficient for the applied quantity of the hydrocarbon to spread itself uniformly to attain a concentration, which is at par with natural concentration of the hydrocarbon in the experimental soil. Studies on kinetics of the reaction imply that the reaction occurs in different phases, rate constants being gradually increased with time. The positive influence of increase in ambient temperature and rainfall on disappearance of the hydrocarbon is seen in the experiment. It has been found that the most probable speed of the hydrocarbon for horizontal movement is 3.75 cm per month in the experimental soil.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135873344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis, Characterization, Theoretical Studies and in Vitro Embriyotoxic, Genotoxic and Anticancer Effects of Novel Phenyl(1,4,6-Triphenyl-2-Thioxo-1,2,3,4-Tetrahydropyrimidin-5-yl)Methanone","authors":"","doi":"10.1080/10406638.2023.2276243","DOIUrl":"10.1080/10406638.2023.2276243","url":null,"abstract":"<div><div>In this study, phenyl (1,4,6-triphenyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methanone was obtained <em>by</em> using the Biginelli reaction method. The structure of this compound was analyzed using elemental analysis, IR, <sup>1</sup>H, and <sup>13</sup>C NMR. The quantum chemical calculations (QCC) of this compound were performed density functional theory (DFT) method, 6–31 G (d, p) base set, and B3LYP functions with the Gaussian09W software package. Literature shows that pyrimidine-derived compounds have very active biological properties. For this reason, the biologically active properties of the synthesized compound were also examined. To determine embryotoxic, genotoxic, and cytotoxic effects of compound, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2<em>H</em>-tetrazolium bromide (MTT), lactate dehydrogenase (LDH) release, micronucleus (MN) and 8-OH-dG assays were carried out. On the other hand, pharmacokinetic and toxicity properties (ADMET) were predicted <em>in silico via</em> SwissADME and Protox-II web tools. <em>In silico</em> estimates of this compound used in the study showed that the compound has the covetable physicochemical properties for bioavailability. In conclusion, the obtained results of our study clearly showed that this compound exerted strong toxicity potential.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135873902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Degree-Based Topological Indices of Kagome Graphene, and Carbon Kagome Nanotubes and Nanotori","authors":"","doi":"10.1080/10406638.2023.2273883","DOIUrl":"10.1080/10406638.2023.2273883","url":null,"abstract":"<div><div>Approaches based on graph descriptors have been used in cheminformatics and bioinformatics for molecular property prediction. In this article, we apply partition technique and simple counting schemes to describe the structure of a two-dimensional (2D) kagome graphene and then derive the closed form of various degree-based topological indices (graph descriptor) of 2D kagome graphene, and its tubular and toroidal forms.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136133996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental and Computational Study on the Spectroscopic Approach, Hyperpolarizabilities, NBO Analysis, ADMET Studies, and In-Silico Ligand-Protein Docking of 2,4,6-Trifluoro-5-Chloro Pyrimidine","authors":"","doi":"10.1080/10406638.2023.2270122","DOIUrl":"10.1080/10406638.2023.2270122","url":null,"abstract":"<div><div>The 2,4,6-trifluoro-5-chloro pyrimidine (TF5CP) was chosen for extensive investigation of its theoretical and experimental vibrational assignments, structural benchmarks, and spectroscopic (FT-IR, FT-Raman, UV–Vis, and NMR) investigations by Hartree–Fock (HF) functional with 6-311 + G(2d,p) basis set. The spectrum of detailed vibrational interpretation was to be provided by the MOLVIB software. Bonding orbitals participate in all stages of natural bond orbitals (NBO) analysis as donors and acceptors, which stabilizes molecules through intermolecular charge transfer. Molecular docking research was used to foresee the binding interactions of the TF5CP derivative with the receptor 3WZD. Auto-dock software was used to a conduct receptor–ligand docking investigation. According to the molecular docking results, the highest mean negative binding affinity (–5.639 kcal/mol) was exhibited by the current chemical. Based on the five-point rule of Lipinski, drug similarity was determined, and the ADMET variables were also predicted.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134908893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New 1,2,3‐Triazole‐Tethered Chalcone Derivatives: Synthesis, Bioevaluation and Computational Study","authors":"","doi":"10.1080/10406638.2023.2276239","DOIUrl":"10.1080/10406638.2023.2276239","url":null,"abstract":"<div><div>In search of new active molecules, a small focused library of novel 1,2,3-triazoles based chalcone derivatives has been efficiently prepared <em>via</em> the click chemistry approach. All the synthesized compounds were characterized with the help of IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and mass spectroscopic techniques. The synthesized novel 1,2,3-triazoles based chalcone derivatives evaluated for their anti-inflammatory and antioxidant activity. Furthermore, molecular modeling study could support these outcomes by demonstrating very good binding affinities at the active site of the cyclooxygenase 2 (COX-2) iterating the potential of this scaffold for further optimization.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135679622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"First Approaches for the Novel Pyrido[1'',2'':2',3'][1,2,4]Triazolo [5',1',2,3][1,3]Thiazolo[4,5-b] Pyridines: Synthesis, Characterization and Antimicrobial Efficiency","authors":"","doi":"10.1080/10406638.2023.2270555","DOIUrl":"10.1080/10406638.2023.2270555","url":null,"abstract":"<div><div>Vilsmeier–Haack formylation of 3-aminothiazolotriazolopyridine-7,9-dicarbonitrile <strong>3</strong> afforded the corresponding aldehyde derivative <strong>4</strong> in a 65% yield. Some Schiff bases <strong>5</strong>-<strong>7</strong> were efficiently synthesized by reacting substrate <strong>4</strong> with some primary amines. Reaction of substrate <strong>4</strong> with some active methylene nitriles produced 2-amino-3-substituted-pyridotriazolothiazolopyridines <strong>8</strong>–<strong>12</strong>. Substrate <strong>4</strong> was utilized as a key intermediate for a diversity of pyridotriazolothiazolopyrazolopyridines <strong>13–15</strong>, through the Friedlander reaction with pyrazolidine-3,5-dione, 5-amino-2,4-dihydro-3<em>H</em>-pyrazol-3-one, and 5-phenyl-2,4-dihydro-3<em>H</em>-pyrazol-3-one. Further, the reaction of substrate <strong>4</strong> with 5-amino-3-methyl-1<em>H</em>-pyrazole and 6-aminouracil, as cyclic enamines, produced pyridotriazolothiazolopyrazolopyridine <strong>16</strong> and pyridotriazolothiazolopyridopyrimidine <strong>17</strong>, respectively. The antimicrobial efficiency was assessed for the synthesized products, and some of them showed notable activity. The structures of the synthesized products were confirmed using analytical and spectroscopic data.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135883824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design, Synthesis, and Biological Testing of Pyrazoline Derivatives of Combretastatin-A4: A Quest for Anticancer, Anti-Inflammatory, and Antioxidant Agents","authors":"","doi":"10.1080/10406638.2023.2271113","DOIUrl":"10.1080/10406638.2023.2271113","url":null,"abstract":"<div><div>Three groups of novel analogs of combretastatin-A4 (CA-4), viz., the <em>N</em><sup>1</sup>-phenyl-pyrazoline (<strong>5a–e</strong>), <em>N</em><sup>1</sup>-alkyl acetylated pyrazoline (<strong>6a–c</strong>), and <em>N</em><sup>1</sup>-phenyl acetylated pyrazoline (<strong>7a–g</strong>) were designed, and synthesized in good yield. The structure of the compounds was confirmed by spectroscopic techniques. All the compounds were evaluated for their <em>in vitro</em> anticancer (MCF-7 cell line), antioxidant (DPPH, NO, SOR, and H<sub>2</sub>O<sub>2</sub>), and anti-inflammatory activity. Compounds <strong>5d</strong>, <strong>7g</strong>, <strong>7f</strong>, <strong>7e</strong>, <strong>7c</strong>, <strong>5b</strong>, <strong>6a</strong>, <strong>7b</strong>, and <strong>7a</strong> showed excellent potency with GI<sub>50</sub> ranging from 0.1 to 10.9 µM against the MCF-7 cell line. Compounds <strong>7f</strong>, <strong>7g</strong>, <strong>5c</strong>, <strong>5d</strong>, <strong>5b</strong>, <strong>7e</strong>, and <strong>6a</strong> exhibited good anti-inflammatory activity. Encouraged by these results, all the compounds were also tested for their antioxidant potency. Compounds <strong>6a</strong>, <strong>6c</strong>, <strong>7b</strong>, <strong>7c</strong>, <strong>7f</strong>, and <strong>7g</strong> were found to be excellent scavengers of all four free radicals (DPPH, NO, SOR, and H<sub>2</sub>O<sub>2</sub>).</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138563574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review on Synthesis and Biological Applications of Quinoline Derivative as Fused Aromatic Compounds","authors":"","doi":"10.1080/10406638.2023.2270118","DOIUrl":"10.1080/10406638.2023.2270118","url":null,"abstract":"<div><div>Quinoline is a N-containing heterocyclic organic compounds with significant biological importance in pharmaceuticals field as well as natural products. They exhibit excellent pharmacological activities. To synthesize quinoline and their derivatives several synthetic methods have reported, such as conventional method, ultrasonic method, microwave (MW) irradiation method, with or without catalytic reaction, which have various pharmacological and biological activities, such as antibacterial, antifungal, anticancer, anti-HIV, antimalarial, antitumor, and anti-inflammatory activity. The objective of this review is to compile various synthetic methods were used for the formation of the Quinoline derivatives and their biological importance, such as antibacterial, anticancer, anti-microbial, antimalarial, antileishmanial, antifungal, and anti-inflammatory during 2010–2023, which will help the researchers how are working in this area.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136234306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anti-Cancer Potential of Phytocompounds from Ziziphus jujuba against Lung Cancer Target Proteins: An In Silico Validation","authors":"","doi":"10.1080/10406638.2023.2273878","DOIUrl":"10.1080/10406638.2023.2273878","url":null,"abstract":"<div><div><em>Ziziphus jujuba</em> plant belongs to Rhamnaceous family and grows mainly in Europe, southern and eastern Asia, and Australia. Recent phytochemical investigation of plants provided some information on their biological effects, such as the hepatoprotective, immunostimulating, anti-obesity, anti-inflammatory, and anti-cancer properties. The current study investigated 34 phytocompounds from <em>Z. jujuba</em> and three anti-cancer drugs against three lung cancer target proteins. Drug likeliness screening revealed that two compounds dodecanoic acid and 7,9-di-tert-butyl-1-oxaspiro[4,5]deca-6,9-diene-2,8-dione possess zero violation, and compound azelaic acid possesses single violation against five drug rules. Molecular docking study reveals that 34 phytocompounds from <em>Z. jujuba</em> and three anti-cancer drugs showed docking score values in the range of −3.9 to −10.2 kcal/mol and −7.2 to −9.0 kcal/mol against three significant lung cancer target proteins. Furthermore, <em>in silico</em> screening top scored three phytocompounds campesterol, stigmast-5-en-3-ol, 7,9-di-tert-butyl-1-oxaspiro[4,5]deca-6,9-diene-2,8-dione and three anti-cancer drugs etoposide, paclitaxel, and doxorubicin utilized. Pharmacokinetic profile of three phytocompounds from <em>Z. jujuba</em> showed excellent absorption, distribution, metabolism, excretion, and toxicity profile than standard drugs. Furthermore, bioactivity and density functional theory analysis showed that phytocompounds from <em>Z. jujuba</em> possess better bioactivity scores and molecular electrostatic potentials than standard drugs. Molecular dynamics simulation results revealed that campesterol with CDK2 (PDB ID 1GII) and MDM2/P53 (4HFZ) target proteins possess better simulation trajectories and binding affinity than standard drugs. Further clinical trials of compounds (campesterol, stigmast-5-en-3-ol, 7,9-di-tert-butyl-1-oxaspiro[4,5]deca-6,9-diene-2,8-dione) are needed to check clinical pertinence toward lung cancer target proteins to commercialize these novel drug molecule in the drug industry.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135270823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}