Journal of Tissue Engineering and Regenerative Medicine最新文献

筛选
英文 中文
3D Printing of Bone Substitutes Based on Vat Photopolymerization Processes: A Systematic Review 基于还原光聚合工艺的3D打印骨替代物:系统综述
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2023-04-08 DOI: 10.1155/2023/3901448
Simon Enbergs, J. Spinnen, T. Dehne, M. Sittinger
{"title":"3D Printing of Bone Substitutes Based on Vat Photopolymerization Processes: A Systematic Review","authors":"Simon Enbergs, J. Spinnen, T. Dehne, M. Sittinger","doi":"10.1155/2023/3901448","DOIUrl":"https://doi.org/10.1155/2023/3901448","url":null,"abstract":"Treatment options for critically sized bone defects are currently limited to metal osteosynthesis, autologous bone grafting, or calcium-based implants to bridge the gap. Additive manufacturing techniques pose a possible alternative. The light-basedthree-dimensional printing process of vat photopolymerization (VP) is of particular interest since it enables the printing of complex scaffold architectures at high resolution. This review compares multiple vat photopolymerization processes as well as the employed resin components’ interactions with musculoskeletal cells and tissue. The results show an outstanding printing capability, exceeding the potential of other printing methods. However, despite the availability of various biocompatible materials, neither the mechanical strength of bone nor the scale necessary for clinical application has been achieved so far when relying on single material constructs. One possible solution is the development of adaptive hybrid constructs produced with multimaterial VP.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45989563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorapatite-Coated Percutaneous Devices Promote Wound Healing and Limit Epithelial Downgrowth at the Skin-Device Interface 氟磷灰石涂层经皮装置促进伤口愈合并限制皮肤装置界面的上皮细胞生长
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2023-03-29 DOI: 10.1155/2023/2212035
Samantha K. Steyl, J. P. Beck, J. Agarwal, K. Bachus, David L. Rou, S. Jeyapalina
{"title":"Fluorapatite-Coated Percutaneous Devices Promote Wound Healing and Limit Epithelial Downgrowth at the Skin-Device Interface","authors":"Samantha K. Steyl, J. P. Beck, J. Agarwal, K. Bachus, David L. Rou, S. Jeyapalina","doi":"10.1155/2023/2212035","DOIUrl":"https://doi.org/10.1155/2023/2212035","url":null,"abstract":"A percutaneous osseointegrated device becomes deeply ingrown by endosteal bone and traverses the overlying soft tissues of the residual limb, providing a direct link to the bone-anchored artificial limb. Continuous wound healing around these devices can result in the formation of sinus tracts as “down-growing” epithelial cells are unable to recognize and adhere to the “nonbiological” implant surface. Such sinus tracts provide paths for bacterial colonization and deep infection. In order to limit adverse outcomes and provide a robust seal, it was hypothesized that by coating the titanium surface of the percutaneous post with the mineral component of dental enamel, down-growing epidermal cells might recognize the coating as “biological” and adhere to this nonliving surface. To test this hypothesis, sintered partially and fully fluoridated hydroxyapatite (HA) was chosen as coatings. Using an established surgical protocol, fluorapatite (FA), hydroxyfluorapatite (FHA), HA-coated percutaneous posts, and titanium controls were surgically placed under the dorsal skin in 20 CD hairless rats. The animals were sacrificed at four weeks, and implants and surrounding tissues were harvested and subjected to further analyses. Downgrowth and granulation tissue area data showed statistically significant reductions around the FA-coated devices. Moreover, compared to the control group, the FA- and HA-coated groups showed downregulation of mRNA for EGFr, EGF, and FGF-10. Interestingly, the FA-coated group had upregulation of TGF-α. These data suggest that FA could become an ideal coating material for preventing downgrowth, assuming the long-term stability of these coated surfaces can be verified in a clinically relevant animal model.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45147737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Validation of a Multiparametric Semiquantitative Scoring System for the Histopathological Assessment of Ischaemia Severity in Skeletal Muscle 多参数半定量评分系统的开发和验证,用于骨骼肌缺血严重程度的组织病理学评估
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2023-03-16 DOI: 10.1155/2023/5592455
C. Sanz-Nogués, M. Creane, S. Hynes, Xizhe Chen, C. A. Lagonda, K. Goljanek‐Whysall, Timothy O’Brien
{"title":"Development and Validation of a Multiparametric Semiquantitative Scoring System for the Histopathological Assessment of Ischaemia Severity in Skeletal Muscle","authors":"C. Sanz-Nogués, M. Creane, S. Hynes, Xizhe Chen, C. A. Lagonda, K. Goljanek‐Whysall, Timothy O’Brien","doi":"10.1155/2023/5592455","DOIUrl":"https://doi.org/10.1155/2023/5592455","url":null,"abstract":"Skeletal muscle is one of the most abundant and dynamic tissues of the body, with a strong regenerative capacity. Muscle injuries can occur as a result of a variety of events, including tissue ischaemia. Lower limb ischaemia occurs when there is an insufficient nutrient and oxygen supply, often caused by stenosis of the arteries due to atherosclerosis. The aim of this study was to develop and validate a multiparametric scoring tool for assessing ischaemia severity in skeletal muscle in a commonly used preclinical animal model. Tissue ischaemia was surgically induced in mice by ligation and excision of the femoral artery. Calf muscles were carefully dissected, prepared for histological analysis, and scored for inflammation, fibrosis, necrosis, adipocyte infiltration, and muscle fibre degeneration/regeneration. Kendall’s coefficient of concordance (W) showed a very good agreement between the appraisers when scoring each individual histological feature: inflammation (W = 0.92, \u0000 \u0000 p\u0000 ≤\u0000 0.001\u0000 \u0000 ), fibrosis (W = 0.94, \u0000 \u0000 p\u0000 ≤\u0000 0.001\u0000 \u0000 ), necrosis (W = 0.77, \u0000 \u0000 p\u0000 ≤\u0000 0.001\u0000 \u0000 ), adipocyte infiltration (W = 0.91, \u0000 \u0000 p\u0000 ≤\u0000 0.001\u0000 \u0000 ), and fibre degeneration/regeneration (W = 0.86, \u0000 \u0000 p\u0000 ≤\u0000 0.001\u0000 \u0000 ). Intrarater agreement was also excellent (W = 0.94 or more, \u0000 \u0000 p\u0000 ≤\u0000 0.001\u0000 \u0000 ). There was a statistically significant negative association between the level of muscle ischaemia damage and the calf muscle weight and skeletal muscle fibre diameter. Here, we have developed and validated a new multiparametric, semiquantitative scoring system for assessing skeletal muscle damage due to ischaemia, with excellent inter- and intrarater reproducibility. This scoring system can be used for assessing treatment efficacy in preclinical models of hind limb ischaemia.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47384481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patient-Derived Breast Cancer Bone Metastasis In Vitro Model Using Bone-Mimetic Nanoclay Scaffolds 应用仿骨纳米粘土支架的癌症患者源性骨转移体外模型
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2023-03-11 DOI: 10.1155/2023/5753666
Haneesh Jasuja, Farid Solaymani Mohammadi, Jiha Kim, A. Gaba, D. Katti, K. Katti
{"title":"Patient-Derived Breast Cancer Bone Metastasis In Vitro Model Using Bone-Mimetic Nanoclay Scaffolds","authors":"Haneesh Jasuja, Farid Solaymani Mohammadi, Jiha Kim, A. Gaba, D. Katti, K. Katti","doi":"10.1155/2023/5753666","DOIUrl":"https://doi.org/10.1155/2023/5753666","url":null,"abstract":"The unavailability of reliable models for studying breast cancer bone metastasis is the major challenge associated with poor prognosis in advanced-stage breast cancer patients. Breast cancer cells tend to preferentially disseminate to bone and colonize within the remodeling bone to cause bone metastasis. To improve the outcome of patients with breast cancer bone metastasis, we have previously developed a 3D in vitro breast cancer bone metastasis model using human mesenchymal stem cells (hMSCs) and primary breast cancer cell lines (MCF-7 and MDAMB231), recapitulating late-stage of breast cancer metastasis to bone. In the present study, we have tested our model using hMSCs and patient-derived breast cancer cell lines (NT013 and NT023) exhibiting different characteristics. We investigated the effect of breast cancer metastasis on bone growth using this 3D in vitro model and compared our results with previous studies. The results showed that NT013 and NT023 cells exhibiting hormone-positive and triple-negative characteristics underwent mesenchymal to epithelial transition (MET) and formed tumors in the presence of bone microenvironment, in line with our previous results with MCF-7 and MDAMB231 cell lines. In addition, the results showed upregulation of Wnt-related genes in hMSCs, cultured in the presence of excessive ET-1 cytokine released by NT013 cells, while downregulation of Wnt-related genes in the presence of excessive DKK-1, released by NT023 cells, leading to stimulation and abrogation of the osteogenic pathway, respectively, ultimately mimicking different types of bone lesions in breast cancer patients.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49298459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial Progenitor Cell Therapy for Fracture Healing: A Dose-Response Study in a Rat Femoral Defect Model 内皮祖细胞治疗骨折:大鼠股骨缺损模型的剂量反应研究
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2023-03-09 DOI: 10.1155/2023/8105599
D. Ramnaraign, C. Godbout, K. Hali, Christian Hegner, Brent D. Bates, S. Desjardins, J. Peck, E. Schemitsch, A. Nauth
{"title":"Endothelial Progenitor Cell Therapy for Fracture Healing: A Dose-Response Study in a Rat Femoral Defect Model","authors":"D. Ramnaraign, C. Godbout, K. Hali, Christian Hegner, Brent D. Bates, S. Desjardins, J. Peck, E. Schemitsch, A. Nauth","doi":"10.1155/2023/8105599","DOIUrl":"https://doi.org/10.1155/2023/8105599","url":null,"abstract":"Endothelial progenitor cell (EPC) therapy has been successfully used in orthopaedic preclinical models to heal bone defects. However, no previous studies have investigated the dose-response relationship between EPC therapy and bone healing. This study aimed to assess the effect of different EPC doses on bone healing in a rat model to define an optimal dose. Five-millimeter segmental defects were created in the right femora of Fischer 344 rats, followed by stabilization with a miniplate and screws. Rats were assigned to one of six groups (control, 0.1 M, 0.5 M, 1.0 M, 2.0 M, and 4.0 M; n = 6), receiving 0, 1 × 105, 5 × 105, 1 × 106, 2 × 106, and 4 × 106 EPCs, respectively, delivered into the defect on a gelatin scaffold. Radiographs were taken every two weeks until the animals were euthanized 10 weeks after surgery. The operated femora were then evaluated using micro-computed tomography and biomechanical testing. Overall, the groups that received higher doses of EPCs (0.5 M, 1.0 M, 2.0 M, and 4.0 M) reached better outcomes. At 10 weeks, full radiographic union was observed in 67% of animals in the 0.5 M group, 83% of animals in the 1.0 M group, and 100% of the animals in the 2.0 M and 4.0 M groups, but none in the control and 0.1 M groups. The 2.0 M group also displayed the strongest biomechanical properties, which significantly improved relative to the control and 0.1 M groups. In summary, this study defined a dose-response relationship between EPC therapy and bone healing, with 2 × 106 EPCs being the optimal dose in this model. Our findings emphasize the importance of dosing considerations in the application of cell therapies aimed at tissue regeneration and will help guide future investigations and clinical translation of EPC therapy.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48857802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ascorbic Acid 2-Phosphate-Releasing Supercritical Carbon Dioxide-Foamed Poly(L-Lactide-Co-epsilon-Caprolactone) Scaffolds Support Urothelial Cell Growth and Enhance Human Adipose-Derived Stromal Cell Proliferation and Collagen Production 抗坏血酸- 2-磷酸释放超临界二氧化碳泡沫聚(l -乳酸- co -epsilon-己内酯)支架支持尿路上皮细胞生长,促进人类脂肪来源的基质细胞增殖和胶原蛋白的产生
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2023-03-04 DOI: 10.1155/2023/6404468
Alma Kurki, Kaarlo Paakinaho, M. Hannula, J. Hyttinen, S. Miettinen, Reetta Sartoneva
{"title":"Ascorbic Acid 2-Phosphate-Releasing Supercritical Carbon Dioxide-Foamed Poly(L-Lactide-Co-epsilon-Caprolactone) Scaffolds Support Urothelial Cell Growth and Enhance Human Adipose-Derived Stromal Cell Proliferation and Collagen Production","authors":"Alma Kurki, Kaarlo Paakinaho, M. Hannula, J. Hyttinen, S. Miettinen, Reetta Sartoneva","doi":"10.1155/2023/6404468","DOIUrl":"https://doi.org/10.1155/2023/6404468","url":null,"abstract":"Tissue engineering can provide a novel approach for the reconstruction of large urethral defects, which currently lacks optimal repair methods. Cell-seeded scaffolds aim to prevent urethral stricture and scarring, as effective urothelium and stromal tissue regeneration is important in urethral repair. In this study, the aim was to evaluate the effect of the novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide-foamed poly(L-lactide-co-ε-caprolactone) (PLCL) scaffolds (scPLCLA2P) on the viability, proliferation, phenotype maintenance, and collagen production of human urothelial cell (hUC) and human adipose-derived stromal cell (hASC) mono- and cocultures. The scPLCLA2P scaffold supported hUC growth and phenotype both in monoculture and in coculture. In monocultures, the proliferation and collagen production of hASCs were significantly increased on the scPLCLA2P compared to scPLCL scaffolds without A2P, on which the hASCs formed nonproliferating cell clusters. Our findings suggest the A2P-releasing scPLCLA2P to be a promising material for urethral tissue engineering.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42030571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Research Progress of Macrophages in Bone Regeneration 巨噬细胞在骨再生中的研究进展
3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2023-02-07 DOI: 10.1155/2023/1512966
Dingmei Zhang, Yi Dang, Renli Deng, Yaping Ma, Jing Wang, Jun Ao, Xin Wang
{"title":"Research Progress of Macrophages in Bone Regeneration","authors":"Dingmei Zhang, Yi Dang, Renli Deng, Yaping Ma, Jing Wang, Jun Ao, Xin Wang","doi":"10.1155/2023/1512966","DOIUrl":"https://doi.org/10.1155/2023/1512966","url":null,"abstract":"Bone tissue regeneration plays an increasingly important role in contemporary clinical treatment. The reconstruction of bone defects remains a huge challenge for clinicians. Bone regeneration is regulated by the immune system, in which inflammation is an important regulating factor in bone formation and remodeling. As the main cells involved in inflammation, macrophages play a key role in osteogenesis by polarizing into different phenotypes during different stages of bone regeneration. Considering this, this review mainly summarizes the function of macrophage in bone regeneration based on mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, and vascular cells. In conclusion, anti-inflammatory macrophages (M2) have a greater potentiality to promote bone regeneration than M0 and classically activated proinflammatory macrophages (M1). In the fracture and bone defect models, tissue engineering materials can induce the transition from M1 to M2, alter the bone microenvironment, and promote bone regeneration through interactions with bone-related cells and blood vessels. The review provides a further understanding of macrophage polarization behavior in the evolving field of bone immunology.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136292881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osteogenesis of Human iPSC-Derived MSCs by PLLA/SF Nanofiber Scaffolds Loaded with Extracellular Matrix 负载细胞外基质的PLLA/SF纳米纤维支架对人iPSC衍生MSCs的成骨作用
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2023-02-06 DOI: 10.1155/2023/5280613
Junming Zhang, Lingbin Che, Yunliang Wu, Lei Zhou, Li Liu, Yuanhang Yue, D. Song, X. Lou
{"title":"Osteogenesis of Human iPSC-Derived MSCs by PLLA/SF Nanofiber Scaffolds Loaded with Extracellular Matrix","authors":"Junming Zhang, Lingbin Che, Yunliang Wu, Lei Zhou, Li Liu, Yuanhang Yue, D. Song, X. Lou","doi":"10.1155/2023/5280613","DOIUrl":"https://doi.org/10.1155/2023/5280613","url":null,"abstract":"Bone defects that arise from trauma, skeletal diseases, or tumor resections have become the commonest and most thorny problems in orthopedic clinics. Recently, biocomposite materials used as artificial bone repair materials have provided a promising approach for bone regeneration. In this study, poly (l-lactide acid) (PLLA) and silk fibroin (SF) were used to fabricate nanofiber scaffolds by electrospinning technology. In order to simulate a biomimetic osteoblast microenvironment, decellularized extracellular matrix from osteoblasts was loaded into the biocomposite scaffolds (O-ECM/PLLA/SF). It was found that the O-ECM/PLLA/SF scaffolds were nontoxic for L929 cells and had good cytocompatibility. Their effects on mesenchymal stem cells derived from human-induced pluripotent stem cell (iPSC-MSC) behavior were investigated. As a result, the scaffolds with the addition of O-ECM showed enhanced alizarin red S (ARS) activity. In addition, higher expression of osteogenic gene markers such as runt-related transcription factor 2 (Runx2), collagen type I (Col-1), and osteocalcin (OCN) as well as upregulated expression of osteogenic marker protein osteopontin (OPN) and Col-1 further substantiated the applicability of O-ECM/PLLA/SF scaffolds for osteogenesis. Furthermore, the in vivo study also indicated maximal new bone formation in the skull defect model of Sprague Dawley (SD) rats treated with the O-ECM/PLLA/SF carried by human iPSC-MSCs. Hence, this study suggests that O-ECM/PLLA/SF scaffolds have a potential application in bone tissue engineering.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45733269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent Advances in Blood Cell-Inspired and Clot Targeted Thrombolytic Therapies. 血细胞激发和凝块靶向溶栓治疗的最新进展。
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2023-01-01 Epub Date: 2023-02-17 DOI: 10.1155/2023/6117810
Anastasia Sheridan, Ashley C Brown
{"title":"Recent Advances in Blood Cell-Inspired and Clot Targeted Thrombolytic Therapies.","authors":"Anastasia Sheridan,&nbsp;Ashley C Brown","doi":"10.1155/2023/6117810","DOIUrl":"10.1155/2023/6117810","url":null,"abstract":"<p><p>Myocardial infarction, stroke, and pulmonary embolism are all deadly conditions associated with excessive thrombus formation. Standard treatment for these conditions involves systemic delivery of thrombolytic agents to break up clots and restore blood flow; however, this treatment can impact the hemostatic balance in other parts of the vasculature, which can lead to excessive bleeding. To avoid this potential danger, targeted thrombolytic treatments that can successfully target thrombi and release an effective therapeutic load are necessary. Because activated platelets and fibrin make up a large proportion of clots, these two components provide ample opportunities for targeting. This review will highlight potential thrombus targeting mechanisms as well as recent advances in thrombolytic therapies which utilize blood-cells and clotting proteins to effectively target and lyse clots.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2023 ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511217/pdf/nihms-1907106.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41093759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Long-term passages of human clonal mesenchymal stromal cells can alleviate the disease in the rat model of collagen-induced arthritis resembling early passages of different heterogeneous cells 人克隆间充质间质细胞的长期传代可以减轻大鼠胶原性关节炎模型的疾病,类似于不同异质细胞的早期传代
IF 3.3 3区 生物学
Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-11-27 DOI: 10.1002/term.3368
Mahnaz Babaahmadi, Behnoosh Tayebi, Nima Makvand Gholipour, Phillip Bendele, Jed Pheneger, Abolfazl Kheimeh, Amir Kamali, Mohammad Molazem, Hossein Baharvand, Mohamadreza Baghaban Eslaminejad, Ensiyeh Hajizadeh-Saffar, Seyedeh-Nafiseh Hassani
{"title":"Long-term passages of human clonal mesenchymal stromal cells can alleviate the disease in the rat model of collagen-induced arthritis resembling early passages of different heterogeneous cells","authors":"Mahnaz Babaahmadi,&nbsp;Behnoosh Tayebi,&nbsp;Nima Makvand Gholipour,&nbsp;Phillip Bendele,&nbsp;Jed Pheneger,&nbsp;Abolfazl Kheimeh,&nbsp;Amir Kamali,&nbsp;Mohammad Molazem,&nbsp;Hossein Baharvand,&nbsp;Mohamadreza Baghaban Eslaminejad,&nbsp;Ensiyeh Hajizadeh-Saffar,&nbsp;Seyedeh-Nafiseh Hassani","doi":"10.1002/term.3368","DOIUrl":"https://doi.org/10.1002/term.3368","url":null,"abstract":"<p>Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease of unknown cause. The interaction of immune system cells and the secretion of inflammatory cytokines with synovial cells leads to severe inflammation in the affected joints. Currently, medications, including non-steroidal anti-inflammatory drugs, glucocorticoids, and more recently, disease-modifying anti-rheumatic drugs, are used to reduce inflammation. However, long-term use of these drugs causes adverse effects or resistance in a considerable number of RA patients. Recent findings revealed the safety and efficacy of mesenchymal stromal cells (MSCs)-based therapies both in RA animal models and clinical trials. Here, the beneficial effects of bone marrow-derived heterogeneous MSCs (BM-hMSCs) and Wharton jelly-derived MSCs (WJ-MSCs) at early passages were compared to BM-derived clonal MSCs (BM-cMSCs) at high passage number on a rat model of collagen-induced arthritis. Results showed that systemic delivery of MSCs significantly reversed adverse changes in body weight, paw swelling, and arthritis score in all MSC-treated groups. Radiological images and histological evaluation demonstrated the therapeutic effects of MSCs. There was a decrease in serum level of anti-collagen type II immunoglobulin G and the inflammatory cytokines interleukin (IL)-1β, IL-6, IL-17, and tumor necrosis factor-α in all MSC-treated groups. In contrast, an increase in inhibitory cytokines transforming growth factor-β and IL-10 was seen. Notably, the long-term passages of BM-cMSCs could alleviate RA symptoms similar to the early passages of WJ-MSCs and BM-hMSCs. The importance of BM-cMSCs is the potential to establish cell banks with billions of cells derived from a single donor that could be a competitive cell-based therapy to treat RA.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1261-1275"},"PeriodicalIF":3.3,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5828867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信