Plant SciencePub Date : 2024-11-03DOI: 10.1016/j.plantsci.2024.112314
{"title":"Functional analysis of (E)-β-farnesene synthases involved in accumulation of (E)-β-farnesene in German chamomile (Matricaria chamomilla L.)","authors":"","doi":"10.1016/j.plantsci.2024.112314","DOIUrl":"10.1016/j.plantsci.2024.112314","url":null,"abstract":"<div><div>German chamomile (<em>Matricaria chamomilla</em> L.) is a traditional medicinal aromatic plant, and the sesquiterpenoids in its flowers have important medicinal value. The (<em>E</em>)-<em>β</em>-farnesene (EβF) is one of the active sesquiterpenoid components and is also a major component of aphid alarm pheromones. In this study, two EβF synthase (βFS) genes (<em>McβFS1</em> and <em>McβFS2</em>), were cloned from German chamomile. Subcellular localization analysis showed that both McβFS1 and McβFS2 were localized in the cytoplasm and nucleus. Tissue-specific expression analysis revealed that <em>McβFS1</em> and <em>McβFS2</em> were expressed in all flower stages, with the highest levels observed during the tubular flower extension stage. Prokaryotic expression and enzyme activity results showed that McβFS1 and McβFS2 possess catalytic activity. Overexpression of McβFS1 and McβFS2 in the hairy roots of German chamomile led to the accumulation of EβF, demonstrating enzyme activity <em>in vivo</em>. The promoters of <em>McβFS1</em> and <em>McβFS2</em> were cloned and analyzed. After treating German chamomile with methyl jasmonate (MeJA) and methyl salicylate (MeSA), the transcription levels of <em>McβFS1</em> and <em>McβFS2</em> were found to be regulated by both hormones. In addition, feeding experiments showed that aphid infestation upregulated the expression levels of <em>McβFS1</em> and <em>McβFS2</em>. Our study provides valuable insights into the biosynthesis of EβF, laying a foundation for further research into its metabolic pathways.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant SciencePub Date : 2024-10-29DOI: 10.1016/j.plantsci.2024.112312
{"title":"Mutation of rice SM1 enhances solid leaf midrib formation and increases methane emissions","authors":"","doi":"10.1016/j.plantsci.2024.112312","DOIUrl":"10.1016/j.plantsci.2024.112312","url":null,"abstract":"<div><div>The leaf midrib system is essential for plant growth and development, facilitating nutrient transport, providing structural support, enabling gas exchange, and enhancing resilience to environmental stresses. However, the molecular mechanism regulating leaf midrib development is still unclear.In this study, we reported a rice <em>solid midrib 1</em> (<em>sm1</em>) mutant, exhibiting solid leaf aerenchyma and abaxial rolling leaves due to abnormal development of parenchyma and bulliform cells. Map-based cloning revealed that <em>SM1</em> encodes a litter zipper protein (ZPR). <em>SM1</em> was mainly expressed in the sheaths and basal midrib and was associated with the nucleus. Further experiments indicated that SM1 can interact with OSHB1, preventing the formation of OSHB:OSHB dimers and subsequently repressing the expression of <em>OSH1</em> involved in the regulation and maintenance of apical stem meristem formation. The <em>sm1</em> mutant reduced long-distance oxygen transport ability from shoot to root. The impaired oxygen transport in the <em>sm1</em> mutant may have contributed to the increase in methanogens and elevated methane emissions. Collectively, our findings revealed that the SM1-OSHB1-OSH1 modules regulate leaf aerenchyma development in rice. These modules not only enhance our understanding of the molecular mechanism of rice leaf aerenchyma development but also offer insights for reducing methane emissions through genetic modification.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of the fructose 1,6-bisphosphate aldolase (FBA) family genes in maize and analysis of the phosphorylation regulation of ZmFBA8.","authors":"Zijuan Zhang, Xiaoman Li, Yiying Zhang, Jiajia Zhou, Yanmei Chen, Yuan Li, Dongtao Ren","doi":"10.1016/j.plantsci.2024.112311","DOIUrl":"10.1016/j.plantsci.2024.112311","url":null,"abstract":"<p><p>Fructose 1,6-bisphosphate aldolase (FBA) is a class of aldolase that functions as enzyme participating in carbohydrate metabolism of the Calvin-Benson cycle, gluconeogenesis, and glycolysis, and also as non-enzymatic protein involving in protein binding, gene transcription, signal transduction. FBAs have been identified in a few plant species, however, limited information is known regarding FBA family genes, their biological functions and posttranslational regulations in maize (Zea mays). In this study, nine class I FBAs (ZmFBA1 to ZmFBA9) and one class II FBA (ZmFBA10) in maize were identified. Phosphoproteomic analysis further revealed that multiple ZmFBAs were phosphorylated. We showed that phosphorylation at Ser32 in ZmFBA8 inhibited its FBP binding and enzyme activity. Loss of ZmFBA8 function reduced the growth of maize seedlings. Our results suggest that the phosphorylation is an important regulatory mechanism of ZmFBA8 function.</p>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant SciencePub Date : 2024-10-28DOI: 10.1016/j.plantsci.2024.112309
{"title":"Transcription factor PagERF110 inhibits leaf development by direct regulating PagHB16 in poplar","authors":"","doi":"10.1016/j.plantsci.2024.112309","DOIUrl":"10.1016/j.plantsci.2024.112309","url":null,"abstract":"<div><div>Ethylene-responsive factor (ERF) family genes are crucial for plant growth and development. This study analyzed the functional role of the <em>PagERF110</em> gene in leaf development of <em>Populus alba×P. glandulosa</em>. PagERF110 contains the AP2 conserved domain and exhibits transcriptional activation activity at its C-terminus. Overexpression of <em>PagERF110</em> in transgenic poplar trees resulted in reduced leaf size, leaf area, and vein xylem thickness. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments confirmed that PagERF110 interacts with PagACD32.1. Transcriptome sequencing revealed that <em>PagERF110</em> regulates the expression of key genes involved in leaf development. Furthermore, yeast one-hybrid (Y1H) assays, GUS staining, and ChIP experiments collectively confirmed that PagERF110 targets the expression of <em>PagHB16</em>. In summation, our findings demonstrate that <em>PagERF110</em> functions as a negative regulator in poplar leaf development.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant SciencePub Date : 2024-10-28DOI: 10.1016/j.plantsci.2024.112310
{"title":"Functional analysis of the extraplastidial TRX system in germination and early stages of development of Arabidopsis thaliana","authors":"","doi":"10.1016/j.plantsci.2024.112310","DOIUrl":"10.1016/j.plantsci.2024.112310","url":null,"abstract":"<div><div>A series of processes occur during seed formation, including remarkable metabolic changes that extend from early seed development to seedling establishment. The changes associated with processes initiated mainly after seed imbibition are usually characterized by extensive modification in the redox state of seed storage proteins and of pivotal enzymes for reserve mobilization and usage. Such changes in the redox state are often mediated by thioredoxins (TRXs), oxidoreductase capable of catalyzing the reduction of disulfide bonds in target proteins to regulate its structure and function. Here, we analyzed the previously characterized Arabidopsis mutants of NADPH-dependent TRX reductase types A and B (<em>ntra ntrb</em>), two independent mutant lines of mitochondrial thioredoxin <em>o</em>1 (<em>trxo1</em>) and two thioredoxin <em>h</em>2 (<em>trxh2</em>) mutant lines. Our results indicate that plants deficient in the NADPH dependent thioredoxin system are able to mobilize their reserves, but, at least partly, fail to use these reserves during germination. TRX mutants also show decreased activity of regulatory systems required to maintain redox homeostasis. Moreover, we observed reduced respiration in mutant seeds and seedlings, which in parallel with an impaired energy metabolism affects core biological processes responsible for germination and early development of TRX mutants. Together, these findings suggest that the lack of TRX system induces significant change in the respiration of seeds and seedlings, which undergo metabolic reprogramming to adapt to the new redox state.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant SciencePub Date : 2024-10-26DOI: 10.1016/j.plantsci.2024.112308
Ming Guo, Erjing Si, Jingjing Hou, Lirong Yao, Juncheng Wang, Yaxiong Meng, Xiaole Ma, Baochun Li, Huajun Wang
{"title":"Pgmiox mediates stress response and plays a critical role for pathogenicity in Pyrenophora graminea,the agent of barley leaf stripe.","authors":"Ming Guo, Erjing Si, Jingjing Hou, Lirong Yao, Juncheng Wang, Yaxiong Meng, Xiaole Ma, Baochun Li, Huajun Wang","doi":"10.1016/j.plantsci.2024.112308","DOIUrl":"https://doi.org/10.1016/j.plantsci.2024.112308","url":null,"abstract":"<p><p>Barley leaf stripe is an important disease caused by Pyenophora graminea that affects barley yields in the world. Ascorbic acid (AsA) interacts with key elements of a complex network orchestrating plant defense mechanisms, thereby influencing the outcome of plant-pathogen interaction. Myo-inositol oxygenase (MIOX) is a pivotal enzyme involved in plants development and environmental stimuli. However, MIOX has described functions in plants but has not been characterized in fungi. In this study, we characterized the Pgmiox gene in P. graminea pathogenesis through annotated on the metabolic pathway of ascorbic acid aldehyde. Our analysis suggested that the Pgmiox protein had a typical conserved MIOX domain. Multiple alignment analysis indicated that the P. graminea MIOX orthologue clustered with MIOX proteins of Pyrenophora species. RNA interference successfully reduced transcript abundance of Pgmiox in six transformant lines compared to wild type, and the transformants were further less virulent on the host plant barley. Transformants of Pgmiox had significant reductions in vegetative growth and pathogenicity, which had increased resistance to tebuconazole and carbendazim. In addition, Pgmiox is associated with ionic, drought, osmotic, oxidative, and heavy metal stress tolerance in P. graminea. In conclusion, our findings reveal that Pgmiox may be widely utilized by fungi to enhance pathogenesis and holds significant potential for the development of durable P. graminea resistance through genetic modifications.</p>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant SciencePub Date : 2024-10-24DOI: 10.1016/j.plantsci.2024.112307
{"title":"Functional characterization of chlorophyll b reductase NON-YELLOW COLORING 1 in Medicago truncatula","authors":"","doi":"10.1016/j.plantsci.2024.112307","DOIUrl":"10.1016/j.plantsci.2024.112307","url":null,"abstract":"<div><div>Chlorophyll degradation is a characteristic process of leaf senescence. Two mutant lines, which showed green leaves and seeds during senescence, were identified by screening a <em>Tnt-1</em> retrotransposon-tagged population of <em>Medicago truncatula</em>. Genetic and molecular analyses indicated that the mutated gene is <em>NON-YELLOW COLORING 1</em> (<em>MtNYC1</em>) in <em>M. truncatula</em>. <em>MtNYC1</em> encoded a chlorophyll <em>b</em> reductase, characterized by three transmembrane domains and a catalytic site (Y***K). Our investigation further identified three splicing variants of <em>MtNYC1</em>, encoding a full-length protein (MtNYC1A) and two truncated proteins (MtNYC1B, MtNYC1C). Genetic evidence indicated that the catalytic site and the third transmembrane domain were critical domains for chlorophyll <em>b</em> reductase. The coordinated action of three splicing variants plays a pivotal role in the degradation of chlorophyll during the senescence of leaves. This discovery provides precise target sites for the development of stay-green legume cultivars.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant SciencePub Date : 2024-10-24DOI: 10.1016/j.plantsci.2024.112299
{"title":"Advances of the mechanism for copper tolerance in plants","authors":"","doi":"10.1016/j.plantsci.2024.112299","DOIUrl":"10.1016/j.plantsci.2024.112299","url":null,"abstract":"<div><div>Copper (Cu) is a vital trace element necessary for plants growth and development. It acts as a co-factor for enzymes and plays a crucial role in various physiological processes, including photosynthesis, respiration, antioxidant systems, and hormone signaling transduction. However, excessive amounts of Cu can disrupt normal physiological metabolism, thus hindering plant growth, development, and reducing yield. In recent years, the widespread abuse of Cu-containing fungicides and industrial Cu pollution has resulted in significant soil contamination. Therefore, it is of utmost importance to uncover the adverse effects of excessive Cu on plant growth and delve into the molecular mechanisms employed by plants to counteract the stress caused by excessive Cu. Recent studies have confirmed the inhibitory effects of excess Cu on mineral nutrition, chlorophyll biosynthesis, and antioxidant enzyme activity. This review systematically outlines the ways in which plants tolerate excessive Cu stress and summarizes them into eight Cu-tolerance strategies. Furthermore, it highlights the necessity for further research to comprehend the molecular regulatory mechanisms underlying the responses to excessive Cu stress.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant SciencePub Date : 2024-10-21DOI: 10.1016/j.plantsci.2024.112300
{"title":"Building the physiological barrier: Suberin plasticity in response to environmental stimuli","authors":"","doi":"10.1016/j.plantsci.2024.112300","DOIUrl":"10.1016/j.plantsci.2024.112300","url":null,"abstract":"<div><div>In response to environmental changes, plant roots undergo two major differentiations: the formation of the Casparian strip and the suberin lamella, both of them are widely recognized as an apoplastic diffusion barrier for nutrient and water exchange between the soil and the root vascular bundle. Suberin is a complex biopolyester composed of glycerol esters and phenolic compounds deposited in the cell walls of specific tissues such as endodermis, exodermis, periderm, seed coat and other marginal tissues. Recently, significant progress has been made due to the development of biochemical and genetic techniques. In this review, we not only summarize the aspect of suberin biosynthesis, transport and polymerization, but also elucidate the molecular mechanisms regarding its regulatory network, as well as its adaptive role in abiotic or biotic stress. This will provide important theoretical references for improving crop growth by modifying their adaptive root suberin structure when exposed to environmental changes.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant SciencePub Date : 2024-10-21DOI: 10.1016/j.plantsci.2024.112298
{"title":"Carotenoids: resources, knowledge, and emerging tools to advance apocarotenoid research","authors":"","doi":"10.1016/j.plantsci.2024.112298","DOIUrl":"10.1016/j.plantsci.2024.112298","url":null,"abstract":"<div><div>Carotenoids are a large class of isoprenoid compounds which are biosynthesized by plants, algae, along with certain fungi, bacteria and insects. In plants, carotenoids provide crucial functions in photosynthesis and photoprotection. Furthermore, carotenoids also serve as precursors to apocarotenoids, which are derived through enzymatic and non-enzymatic cleavage reactions. Apocarotenoids encompass a diverse set of compounds, including hormones, growth regulators, and signaling molecules which play vital roles in pathways associated with plant development, stress responses, and plant-organismic interactions. Regulation of carotenoid biosynthesis indirectly influences the formation of apocarotenoids and bioactive effects on target pathways. Recent discovery of a plethora of new bioactive apocarotenoids across kingdoms has increased interest in expanding knowledge of the breadth of apocarotenoid function and regulation. In this review, we provide insights into the regulation of carotenogenesis, specifically linked to the biosynthesis of apocarotenoid precursors. We highlight plant studies, including useful heterologous platforms and synthetic biology tools, which hold great value in expanding discoveries, knowledge and application of bioactive apocarotenoids for crop improvement and human health. Moreover, we discuss how this field has recently flourished with the discovery of diverse functions of apocarotenoids, thereby prompting us to propose new directions for future research.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}