Physical biology最新文献

筛选
英文 中文
Quantitative insights in tissue growth and morphogenesis with optogenetics. 光遗传学对组织生长和形态发生的定量见解。
IF 2 4区 生物学
Physical biology Pub Date : 2023-09-28 DOI: 10.1088/1478-3975/acf7a1
Mayesha Sahir Mim, Caroline Knight, Jeremiah J Zartman
{"title":"Quantitative insights in tissue growth and morphogenesis with optogenetics.","authors":"Mayesha Sahir Mim, Caroline Knight, Jeremiah J Zartman","doi":"10.1088/1478-3975/acf7a1","DOIUrl":"10.1088/1478-3975/acf7a1","url":null,"abstract":"<p><p>Cells communicate with each other to jointly regulate cellular processes during cellular differentiation and tissue morphogenesis. This multiscale coordination arises through the spatiotemporal activity of morphogens to pattern cell signaling and transcriptional factor activity. This coded information controls cell mechanics, proliferation, and differentiation to shape the growth and morphogenesis of organs. While many of the molecular components and physical interactions have been identified in key model developmental systems, there are still many unresolved questions related to the dynamics involved due to challenges in precisely perturbing and quantitatively measuring signaling dynamics. Recently, a broad range of synthetic optogenetic tools have been developed and employed to quantitatively define relationships between signal transduction and downstream cellular responses. These optogenetic tools can control intracellular activities at the single cell or whole tissue scale to direct subsequent biological processes. In this brief review, we highlight a selected set of studies that develop and implement optogenetic tools to unravel quantitative biophysical mechanisms for tissue growth and morphogenesis across a broad range of biological systems through the manipulation of morphogens, signal transduction cascades, and cell mechanics. More generally, we discuss how optogenetic tools have emerged as a powerful platform for probing and controlling multicellular development.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10181059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal calcium fluctuations inHydramorphogenesis. 水合形态发生中普遍存在的钙波动。
IF 2 4区 生物学
Physical biology Pub Date : 2023-09-22 DOI: 10.1088/1478-3975/acf8a4
Oded Agam, Erez Braun
{"title":"Universal calcium fluctuations in<i>Hydra</i>morphogenesis.","authors":"Oded Agam,&nbsp;Erez Braun","doi":"10.1088/1478-3975/acf8a4","DOIUrl":"10.1088/1478-3975/acf8a4","url":null,"abstract":"<p><p>Understanding the collective physical processes that drive robust morphological transitions in animal development necessitates the characterization of the relevant fields involved in morphogenesis. Calcium (Ca<sup>2+</sup>) is recognized as one such field. In this study, we demonstrate that the spatial fluctuations of Ca<sup>2+</sup>during<i>Hydra</i>regeneration exhibit universal characteristics. To investigate this phenomenon, we employ two distinct controls, an external electric field and<i>heptanol</i>, a gap junction-blocking drug. Both lead to the modulation of the Ca<sup>2+</sup>activity and a reversible halting of the regeneration process. The application of an electric field enhances Ca<sup>2+</sup>activity in the<i>Hydra</i>'s tissue and increases its spatial correlations, while the administration of<i>heptanol</i>inhibits its activity and diminishes the spatial correlations. Remarkably, the statistical characteristics of Ca<sup>2+</sup>spatial fluctuations, including the coefficient of variation and skewness, manifest universal shape distributions across tissue samples and conditions. We introduce a field-theoretic model, describing fluctuations in a tilted double-well potential, which successfully captures these universal properties. Moreover, our analysis reveals that the Ca<sup>2+</sup>activity is spatially localized, and the<i>Hydra</i>'s tissue operates near the onset of bistability, where the local Ca<sup>2+</sup>activity fluctuates between low and high excited states in distinct regions. These findings highlight the prominent role of the Ca<sup>2+</sup>field in<i>Hydra</i>morphogenesis and provide insights into the underlying mechanisms governing robust morphological transitions.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10215486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
EMT induces characteristic changes of Rho GTPases and downstream effectors with a mitosis-specific twist. EMT通过有丝分裂特异性扭曲诱导Rho-GTP酶和下游效应物的特征性变化。
IF 2 4区 生物学
Physical biology Pub Date : 2023-09-12 DOI: 10.1088/1478-3975/acf5bd
Kamran Hosseini, Annika Frenzel, Elisabeth Fischer-Friedrich
{"title":"EMT induces characteristic changes of Rho GTPases and downstream effectors with a mitosis-specific twist.","authors":"Kamran Hosseini,&nbsp;Annika Frenzel,&nbsp;Elisabeth Fischer-Friedrich","doi":"10.1088/1478-3975/acf5bd","DOIUrl":"10.1088/1478-3975/acf5bd","url":null,"abstract":"<p><p>Epithelial-mesenchymal transition (EMT) is a key cellular transformation for many physiological and pathological processes ranging from cancer over wound healing to embryogenesis. Changes in cell migration, cell morphology and cellular contractility were identified as hallmarks of EMT. These cellular properties are known to be tightly regulated by the actin cytoskeleton. EMT-induced changes of actin-cytoskeletal regulation were demonstrated by previous reports of changes of actin cortex mechanics in conjunction with modifications of cortex-associated f-actin and myosin. However, at the current state, the changes of upstream actomyosin signaling that lead to corresponding mechanical and compositional changes of the cortex are not well understood. In this work, we show in breast epithelial cancer cells MCF-7 that EMT results in characteristic changes of the cortical association of Rho-GTPases Rac1, RhoA and RhoC and downstream actin regulators cofilin, mDia1 and Arp2/3. In the light of our findings, we propose that EMT-induced changes in cortical mechanics rely on two hitherto unappreciated signaling paths-i) an interaction between Rac1 and RhoC and ii) an inhibitory effect of Arp2/3 activity on cortical association of myosin II.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":"20 6","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10222964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative modeling of EGF receptor ligand discrimination via internalization proofreading. 通过内化校对的EGF受体配体识别的定量建模。
IF 2 4区 生物学
Physical biology Pub Date : 2023-08-22 DOI: 10.1088/1478-3975/aceecd
Jaleesa A Leblanc, Michael G Sugiyama, Costin N Antonescu, Aidan I Brown
{"title":"Quantitative modeling of EGF receptor ligand discrimination via internalization proofreading.","authors":"Jaleesa A Leblanc,&nbsp;Michael G Sugiyama,&nbsp;Costin N Antonescu,&nbsp;Aidan I Brown","doi":"10.1088/1478-3975/aceecd","DOIUrl":"10.1088/1478-3975/aceecd","url":null,"abstract":"<p><p>The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to EGFR while the receptor is exposed on the plasma membrane, EGFR incorporation into endosomes following receptor internalization is an important aspect of EGFR signaling, with EGFR internalization behavior dependent upon the type of ligand bound. We develop quantitative modeling for EGFR recruitment to and internalization from clathrin domains, focusing on how internalization competes with ligand unbinding from EGFR. We develop two model versions: a kinetic model with EGFR behavior described as transitions between discrete states and a spatial model with EGFR diffusion to circular clathrin domains. We find that a combination of spatial and kinetic proofreading leads to enhanced EGFR internalization ratios in comparison to unbinding differences between ligand types. Various stages of the EGFR internalization process, including recruitment to and internalization from clathrin domains, modulate the internalization differences between receptors bound to different ligands. Our results indicate that following ligand binding, EGFR may encounter multiple clathrin domains before successful recruitment and internalization. The quantitative modeling we have developed describes competition between EGFR internalization and ligand unbinding and the resulting proofreading.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":"20 5","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10420722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase transitions in insect swarms. 昆虫群的相变。
IF 2 4区 生物学
Physical biology Pub Date : 2023-08-22 DOI: 10.1088/1478-3975/aceece
Andy M Reynolds
{"title":"Phase transitions in insect swarms.","authors":"Andy M Reynolds","doi":"10.1088/1478-3975/aceece","DOIUrl":"10.1088/1478-3975/aceece","url":null,"abstract":"<p><p>In contrast with laboratory insect swarms, wild insect swarms display significant coordinated behaviour. It has been hypothesised that the presence of a fluctuating environment drives the formation of transient, local order (synchronized subgroups), and that this local order pushes the swarm into a new state that is robust to environmental perturbations. The hypothesis is supported by observations of swarming mosquitoes. Here I provide numerical evidence that the formation of transient, local order is an accidental by-product of the strengthening of short-range repulsion which is expected in the presence of environmental fluctuations. The results of the numerical simulations reveal that this strengthening of the short-range can drive swarms into a crystalline phase containing subgroups that participate in cooperative ring exchanges-a new putative form of collective animal movement lacking velocity correlation. I thereby demonstrate that the swarm state and structure may be tuneable with environmental noise as a control parameter. Predicted properties of the collective modes are consistent with observations of transient synchronized subgroups in wild mosquito swarms that contend with environmental disturbances. When mutual repulsion becomes sufficiently strong, swarms are, in accordance with observations, predicted to form near stationary crystalline states. The analysis suggests that the many different forms of swarming motions observed across insect species are not distinctly different phenomena but are instead different phases of a single phenomenon.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":"20 5","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10401954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Out-of-equilibrium gene expression fluctuations in the presence of extrinsic noise. 在外来噪声存在下的非平衡基因表达波动。
IF 2 4区 生物学
Physical biology Pub Date : 2023-08-10 DOI: 10.1088/1478-3975/acea4e
Marta Biondo, Abhyudai Singh, Michele Caselle, Matteo Osella
{"title":"Out-of-equilibrium gene expression fluctuations in the presence of extrinsic noise.","authors":"Marta Biondo, Abhyudai Singh, Michele Caselle, Matteo Osella","doi":"10.1088/1478-3975/acea4e","DOIUrl":"10.1088/1478-3975/acea4e","url":null,"abstract":"<p><p>Cell-to-cell variability in protein concentrations is strongly affected by extrinsic noise, especially for highly expressed genes. Extrinsic noise can be due to fluctuations of several possible cellular factors connected to cell physiology and to the level of key enzymes in the expression process. However, how to identify the predominant sources of extrinsic noise in a biological system is still an open question. This work considers a general stochastic model of gene expression with extrinsic noise represented as fluctuations of the different model rates, and focuses on the out-of-equilibrium expression dynamics. Combining analytical calculations with stochastic simulations, we characterize how extrinsic noise shapes the protein variability during gene activation or inactivation, depending on the prevailing source of extrinsic variability, on its intensity and timescale. In particular, we show that qualitatively different noise profiles can be identified depending on which are the fluctuating parameters. This indicates an experimentally accessible way to pinpoint the dominant sources of extrinsic noise using time-coarse experiments.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":"20 5","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680095/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10020854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Fundamental insights into the correlation between chromosome configuration and transcription. 对染色体结构和转录之间的相关性的基本见解。
IF 2 4区 生物学
Physical biology Pub Date : 2023-08-04 DOI: 10.1088/1478-3975/ace8e5
Swayamshree Senapati, Inayat Ullah Irshad, Ajeet K Sharma, Hemant Kumar
{"title":"Fundamental insights into the correlation between chromosome configuration and transcription.","authors":"Swayamshree Senapati,&nbsp;Inayat Ullah Irshad,&nbsp;Ajeet K Sharma,&nbsp;Hemant Kumar","doi":"10.1088/1478-3975/ace8e5","DOIUrl":"https://doi.org/10.1088/1478-3975/ace8e5","url":null,"abstract":"<p><p>Eukaryotic chromosomes exhibit a hierarchical organization that spans a spectrum of length scales, ranging from sub-regions known as loops, which typically comprise hundreds of base pairs, to much larger chromosome territories that can encompass a few mega base pairs. Chromosome conformation capture experiments that involve high-throughput sequencing methods combined with microscopy techniques have enabled a new understanding of inter- and intra-chromosomal interactions with unprecedented details. This information also provides mechanistic insights on the relationship between genome architecture and gene expression. In this article, we review the recent findings on three-dimensional interactions among chromosomes at the compartment, topologically associating domain, and loop levels and the impact of these interactions on the transcription process. We also discuss current understanding of various biophysical processes involved in multi-layer structural organization of chromosomes. Then, we discuss the relationships between gene expression and genome structure from perturbative genome-wide association studies. Furthermore, for a better understanding of how chromosome architecture and function are linked, we emphasize the role of epigenetic modifications in the regulation of gene expression. Such an understanding of the relationship between genome architecture and gene expression can provide a new perspective on the range of potential future discoveries and therapeutic research.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":"20 5","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9969063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Emergent dynamics in an astrocyte-neuronal network coupledvianitric oxide. 星形胶质细胞-神经网络偶联一氧化氮的涌现动力学。
IF 2 4区 生物学
Physical biology Pub Date : 2023-08-03 DOI: 10.1088/1478-3975/ace8e6
Bhanu Sharma, Spandan Kumar, Subhendu Ghosh, Vikram Singh
{"title":"Emergent dynamics in an astrocyte-neuronal network coupled<i>via</i>nitric oxide.","authors":"Bhanu Sharma,&nbsp;Spandan Kumar,&nbsp;Subhendu Ghosh,&nbsp;Vikram Singh","doi":"10.1088/1478-3975/ace8e6","DOIUrl":"https://doi.org/10.1088/1478-3975/ace8e6","url":null,"abstract":"<p><p>In the brain, both neurons and glial cells work in conjunction with each other during information processing. Stimulation of neurons can induce calcium oscillations in astrocytes which in turn can affect neuronal calcium dynamics. The 'glissandi' effect is one such phenomenon, associated with a decrease in infraslow fluctuations, in which synchronized calcium oscillations propagate as a wave in hundreds of astrocytes. Nitric oxide molecules released from the astrocytes contribute to synaptic functions based on the underlying astrocyte-neuron interaction network. In this study, by defining an astrocyte-neuronal (A-N) calcium unit as an integrated circuit of one neuron and one astrocyte, we developed a minimal model of neuronal stimulus-dependent and NO-mediated emergence of calcium waves in astrocytes. Incorporating inter-unit communication<i>via</i>NO molecules, a coupled network of 1000 such A-N calcium units is developed in which multiple stable regimes were found to emerge in astrocytes. We examined the ranges of neuronal stimulus strength and the coupling strength between A-N calcium units that give rise to such dynamical behaviors. We also report that there exists a range of coupling strength, wherein units not receiving stimulus also start showing oscillations and become synchronized. Our results support the hypothesis that glissandi-like phenomena exhibiting synchronized calcium oscillations in astrocytes help in efficient synaptic transmission by reducing the energy demand of the process.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":"20 5","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10318244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum: Correlation, response and entropy approaches to allosteric behaviors: a critical comparison on the ubiquitin case (2023Phys. Biol.20056002). 勘误:变构行为的相关、响应和熵方法:对泛素案例的关键比较(2023)。Biol.20056002)。
IF 2 4区 生物学
Physical biology Pub Date : 2023-07-28 DOI: 10.1088/1478-3975/ace8e7
Fabio Cecconi, Giulio Costantini, Carlo Guardiani, Marco Baldovin, Angelo Vulpiani
{"title":"Corrigendum: Correlation, response and entropy approaches to allosteric behaviors: a critical comparison on the ubiquitin case (2023<i>Phys. Biol.</i>20056002).","authors":"Fabio Cecconi,&nbsp;Giulio Costantini,&nbsp;Carlo Guardiani,&nbsp;Marco Baldovin,&nbsp;Angelo Vulpiani","doi":"10.1088/1478-3975/ace8e7","DOIUrl":"https://doi.org/10.1088/1478-3975/ace8e7","url":null,"abstract":"Fabio Cecconi1,2,∗, Giulio Costantini, Carlo Guardiani, Marco Baldovin and Angelo Vulpiani 1 CNR-Istituto dei Sistemi Complessi, Via dei Taurini 19, 00185 Rome, Italy 2 INFN-Sezione di Roma1, P.le Aldo Moro, 2, 00185 Rome, Italy 3 CNR-Istituto dei Sistemi Complessi, Piazzale A. Moro 5, 00185 Rome, Italy 4 Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Universit̀a di Roma, Via Eudossiana 18, 00184 Rome, Italy 5 CNRS, LPTMS, Université Paris-Saclay, 530 Rue André Riviére, 91405 Orsay, France 6 Dipartimento di Fisica, Universit̀a di Roma Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy ∗ Author to whom any correspondence should be addressed.","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":"20 5","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9874249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced germination and electrotactic behaviour ofPhytophthora palmivorazoospores in weak electric fields. 弱电场对棕榈疫霉孢子萌发及电致化行为的影响。
IF 2 4区 生物学
Physical biology Pub Date : 2023-07-28 DOI: 10.1088/1478-3975/ace751
Eleonora Moratto, Stephen Rothery, Tolga O Bozkurt, Giovanni Sena
{"title":"Enhanced germination and electrotactic behaviour of<i>Phytophthora palmivora</i>zoospores in weak electric fields.","authors":"Eleonora Moratto,&nbsp;Stephen Rothery,&nbsp;Tolga O Bozkurt,&nbsp;Giovanni Sena","doi":"10.1088/1478-3975/ace751","DOIUrl":"https://doi.org/10.1088/1478-3975/ace751","url":null,"abstract":"<p><p>Soil-dwelling microorganisms use a variety of chemical and physical signals to navigate their environment. Plant roots produce endogenous electric fields which result in characteristic current profiles. Such electrical signatures are hypothesised to be used by pathogens and symbionts to track and colonise plant roots. The oomycete pathogen<i>Phytophthora palmivora</i>generates motile zoospores which swim towards the positive pole when exposed to an external electric field<i>in vitro</i>. Here, we provide a quantitative characterization of their electrotactic behaviour in 3D. We found that a weak electric field (0.7-1.0 V cm<sup>-1</sup>) is sufficient to induce an accumulation of zoospore at the positive pole, without affecting their encystment rate. We also show that the same external electric field increases the zoospore germination rate and orients the germ tube's growth. We conclude that several early stages of the<i>P. palmivora</i>infection cycle are affected by external electric fields. Taken together, our results are compatible with the hypothesis that pathogens use plant endogenous electric fields for host targeting.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":"20 5","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10293624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信