International Conference on Simulation of Urban Mobility最新文献

筛选
英文 中文
Anticipating Automated Vehicle Presence and the Effects on Interactions with Conventional Traffic and Infrastructure 预测自动驾驶车辆的存在及其对传统交通和基础设施相互作用的影响
International Conference on Simulation of Urban Mobility Pub Date : 2019-08-13 DOI: 10.29007/S6M7
Gerald Richter, Lukas Grohmann, P. Nitsche, G. Lenz
{"title":"Anticipating Automated Vehicle Presence and the Effects on Interactions with Conventional Traffic and Infrastructure","authors":"Gerald Richter, Lukas Grohmann, P. Nitsche, G. Lenz","doi":"10.29007/S6M7","DOIUrl":"https://doi.org/10.29007/S6M7","url":null,"abstract":"Expectations are that automated and connected mobility will increase road safety and traffic efficiency. However, due to possible shortcomings of new technologies , road users may be confronted with disturbances and potential safety risks. The mitigation of such risks will bring necessary changes to road infrastructure, vehicles and road-users’ behavior. In a traffic environment that was built to fit the human perception, preemptive simulation of parametrized scenarios can provide guidelines for what changes and difficulties are to be expected. Utilizing SUMO in varied scenarios, this paper outlines the creation of virtual models that correspond to interaction hot spots on the Austrian road network from digitizing the infrastructure, to calibrating a simulation scenario with congruent traffic measurements while it concludes with the evaluation of scenario simulation results. The approach is demonstrated for a selected motorway ramp scenario, varying rates of automated vehicles and different infrastructure layouts. Performance indicators like vehicle speed distributions and traffic disruptions are defined and analyzed to investigate how adaptations can mitigate risks, influence traffic flow and hence support progressing vehicle automation.","PeriodicalId":201953,"journal":{"name":"International Conference on Simulation of Urban Mobility","volume":"141 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126757121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
From Automated to Manual - Modeling Control Transitions with SUMO 从自动到手动建模控制过渡与相扑
International Conference on Simulation of Urban Mobility Pub Date : 2019-08-13 DOI: 10.29007/SFGK
L. Lücken, Evangelos Mintsis, Kallirroi N. Porfyri, Robert Alms, Yun-Pang Flötteröd, D. Koutras
{"title":"From Automated to Manual - Modeling Control Transitions with SUMO","authors":"L. Lücken, Evangelos Mintsis, Kallirroi N. Porfyri, Robert Alms, Yun-Pang Flötteröd, D. Koutras","doi":"10.29007/SFGK","DOIUrl":"https://doi.org/10.29007/SFGK","url":null,"abstract":"Transitions of Control (ToC) play an important role in the simulative impact assessment of automated driving because they may represent major perturbations of smooth and safe traffic operation. The drivers' efforts to take back control from the \u0000automation are accompanied by a change of driving behavior and may lead to increased error rates, altered headways, safety critical situations, and, in the case of a failing takeover, even to minimum risk maneuvers. In this work we present modeling \u0000approaches for these processes, which have been introduced into SUMO recently in the framework of the TransAID project. Further, we discuss the results of an evaluation of some hierarchical traffic management (TM) procedures devised to ameliorate related disturbances in transition areas, i.e., zones of increased probability for the automation to request a ToC.","PeriodicalId":201953,"journal":{"name":"International Conference on Simulation of Urban Mobility","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130801892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Modelling Bicycle Infrastructure in SUMO 相扑中的自行车基础设施建模
International Conference on Simulation of Urban Mobility Pub Date : 2019-08-13 DOI: 10.29007/6CS5
G. Grigoropoulos, L. Lücken, J. Erdmann, Heather Kaths
{"title":"Modelling Bicycle Infrastructure in SUMO","authors":"G. Grigoropoulos, L. Lücken, J. Erdmann, Heather Kaths","doi":"10.29007/6CS5","DOIUrl":"https://doi.org/10.29007/6CS5","url":null,"abstract":"Bicycle traffic is becoming an increasingly important part of urban traffic. Thus, the simulation and accurate representation of bicycle traffic in microscopic traffic simulation software is gaining importance. As bicycle traffic increases, dedicated bicycle infrastructure is designed to accommodate bicycle traffic. Especially at intersections, the design of intersection approaches follows specific rules and geometric limitations as defined by official design guidelines used in different countries across the world. However, when special environmental factors that affect the intersection layout, such as available space or gradient are not considered, specific standard forms of intersection approaches can be determined based on the number of traffic lanes, the traffic signal control and in the case of this study, the availability as well as the type of dedicated bicycle infrastructure. Categories with available bicycle infrastructure include the cases of bicycle lanes or advisory cycle lanes with advance stop lines for direct left turning bicyclists, the bicycle lanes or advisory bicycle lanes with bicycle boxes and bicycle lanes or bicycle paths with advanced stop lines and a stop area downstream for facilitating an indirect left turn or a two-stage (left) turn of bicyclists. The simulation of such bicycle infrastructure is not natively supported in microscopic traffic simulation software and is mostly only possible through intuitive adjustment of existing network design elements. In this paper, fictional intersections with special bicycle infrastructure are modelled in SUMO. Bicycle traffic data is collected at intersections in Germany with different types of bicycle infrastructure. The collected bicycle traffic data is then used to evaluate the intersection models. Specific recommendations for modelling bicycle infrastructure at intersection approaches in SUMO are provided, and limitations of the proposed methodologies and software limitations are discussed. Results show that the developed solutions can be used to model the bicycle traffic behavior with a reasonable degree of accuracy only for simulation scenarios and traffic situations unaffected by the identified software limitations.","PeriodicalId":201953,"journal":{"name":"International Conference on Simulation of Urban Mobility","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130888228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Reinforcement Learning Agent under Partial Observability for Traffic Light Control in Presence of Gridlocks 基于部分可观察性的交通信号灯控制强化学习智能体
International Conference on Simulation of Urban Mobility Pub Date : 2019-08-13 DOI: 10.29007/BDGN
Thanapapas Horsuwan, C. Aswakul
{"title":"Reinforcement Learning Agent under Partial Observability for Traffic Light Control in Presence of Gridlocks","authors":"Thanapapas Horsuwan, C. Aswakul","doi":"10.29007/BDGN","DOIUrl":"https://doi.org/10.29007/BDGN","url":null,"abstract":"Bangkok is notorious for its chronic traffic congestion due to the rapid urbanization and the haphazard city plan. The Sathorn Road network area stands to be one of the most critical areas where gridlocks are a normal occurrence during rush hours. This stems from the high volume of demand imposed by the dense geographical placement of 3 big educational institutions and the insufficient link capacity with strict routes. Current solutions place heavy reliance on human traffic control expertises to prevent and disentangle gridlocks by consecutively releasing each queue length spillback through inter-junction coordination. A calibrated dataset of the Sathorn Road network area in a microscopic road traffic simulation package SUMO (Simulation of Urban MObility) is provided in the work of Chula-Sathorn SUMO Simulator (Chula-SSS). In this paper, we aim to utilize the Chula-SSS dataset with extended vehicle flows and gridlocks in order to further optimize the present traffic signal control policies with reinforcement learning approaches by an artificial agent. Reinforcement learning has been successful in a variety of domains over the past few years. While a number of researches exist on using reinforcement learning with adaptive traffic light control, existing studies often lack pragmatic considerations concerning application to the physical world especially for the traffic system infrastructure in developing countries, which suffer from constraints imposed from economic factors. The resultant limitation of the agent’s partial observability of the whole network state at any specific time is imperative and cannot be overlooked. With such partial observability constraints, this paper has reported an investigation on applying the Ape-X Deep Q-Network agent at the critical junction in the morning rush hours from 6 AM to 9 AM with practically occasional presence of gridlocks. The obtainable results have shown a potential value of the agent’s ability to learn despite physical limitations in the traffic light control at the considered intersection within the Sathorn gridlock area. This suggests a possibility of further investigations on agent applicability in trying to mitigate complex interconnected gridlocks in the future.","PeriodicalId":201953,"journal":{"name":"International Conference on Simulation of Urban Mobility","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121018947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Vehicle Device Tailored for Hybrid Trolleybuses and Overhead Wires Implementation in SUMO 一种适合混合动力无轨电车和相扑高架线路的车辆装置
International Conference on Simulation of Urban Mobility Pub Date : 2019-08-13 DOI: 10.29007/6PQR
J. Ševčík, J. Přikryl
{"title":"A Vehicle Device Tailored for Hybrid Trolleybuses and Overhead Wires Implementation in SUMO","authors":"J. Ševčík, J. Přikryl","doi":"10.29007/6PQR","DOIUrl":"https://doi.org/10.29007/6PQR","url":null,"abstract":"The electrification of transport is one of the key parts of the present aim to reduce undesirable vehicular emissions in the atmosphere. While the full electrification of personal vehicles is mostly associated with employing a big battery pack on the board and charging on (static) charging stations, another interesting possibility appears in the case of public transport – dynamic drawing of the power from overhead wires. Regarding vehicles moving on the road, this concept is used by trolleybuses or hybrid trolleybuses, i.e. vehicles combining power from the overhead wires and batteries. A replacement of classic buses (with a combustion engine) with (hybrid) trolleybuses is hardly possible without an appropriate adjustment of public transport lines and the necessary infrastructure. For this purpose, a simulation of the adjusted public transport service may be used to identify weaknesses of the proposed solution. This paper presents a new vehicle device and a new additional part of road infrastructure in SUMO. It introduces device.elecHybrid based on existing device.battery, extending its functionality and tailoring it for the needs of hybrid trolleybuses. In addition, overhead wires and traction substations are implemented. As the voltage and electric currents in the overhead wires depend on traffic, the overhead wire parameters are optionally evaluated by a built-in electric circuit solver using Kirchhoff’s laws. The proposed changes allow us to simulate hybrid trolleybus in-motion charging under the overhead wire. The extensions can be immediately used in micro-simulations or even (in a simplified version) in the meso-simulation mode.","PeriodicalId":201953,"journal":{"name":"International Conference on Simulation of Urban Mobility","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128871120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Co-simulation of vehicles and crowds for rescue trials 救援试验中车辆与人群的联合模拟
International Conference on Simulation of Urban Mobility Pub Date : 2019-08-13 DOI: 10.29007/9LNM
Yun-Pang Flötteröd, M. Behrisch, M. Hendriks, Jean-Benoît Bonne, E. Vullings, R. Bruining
{"title":"Co-simulation of vehicles and crowds for rescue trials","authors":"Yun-Pang Flötteröd, M. Behrisch, M. Hendriks, Jean-Benoît Bonne, E. Vullings, R. Bruining","doi":"10.29007/9LNM","DOIUrl":"https://doi.org/10.29007/9LNM","url":null,"abstract":"In this paper, the focus is put on the integration of XVR, SE-Star and SUMO simulators via the Driver+ test-bed, where XVR provides different learning environments for all levels of incident command, SE-Star handles crowd simulation and SUMO focuses on vehicular simulation and routing. With the test-bed and the provided services these simulation tools can synchronically exchange information with each other, creating a common simulation space that offers more possibilities for CM-training, trials and tests. A simulation scenario around the train station in Rotterdam, the Netherlands, is established for demonstration of the connected systems. © 2019, EasyChair. All rights reserved.","PeriodicalId":201953,"journal":{"name":"International Conference on Simulation of Urban Mobility","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125671102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Low-dimensional estimation and prediction framework for description of the oscillatory traffic dynamics 描述振荡交通动态的低维估计与预测框架
International Conference on Simulation of Urban Mobility Pub Date : 2019-08-13 DOI: 10.29007/4GLX
Jakub Król, Bani Anvari, R. Lot
{"title":"Low-dimensional estimation and prediction framework for description of the oscillatory traffic dynamics","authors":"Jakub Król, Bani Anvari, R. Lot","doi":"10.29007/4GLX","DOIUrl":"https://doi.org/10.29007/4GLX","url":null,"abstract":"Large majority of control methodologies used in traffic applications require short-time prediction of the environment. For instance, in widely-used Model Predictive Control [1] employed to reduce fuel and energy consumption of vehicles in a platoon, information about future velocity profiles of leading vehicles is necessary. In such case, the dynamic model should provide information more detailed than prediction of averaged and global quantities. Additionally, if the control input is to be applied at high-frequencies, traffic model must be solved in a short period of time. We propose a novel framework which addresses aforementioned problems by estimating the vehicle velocity at any location in the domain based on the real-time information from induction loops downstream. Additionally, our formulation is linear and low-dimensional (i.e. consists of few degrees of freedom) meaning that the estimation can be executed at high frequencies. First a mapping is constructed from velocities at discrete locations to the smooth continuous field, which is subsequently projected onto its most significant principal components. Next, current state of such system is estimated using Kalman filter by combining the linear, wave-like dynamics of the traffic with the instantaneous information provided by induction loops. Short-term traffic prediction is then achieved by integration of the model forward in time. The proxy methodology is validated using SUMO simulation on the test case of the vehicles approaching a traffic junction. The performance is evaluated based on sampling reconstructed continuous waveform at the locations and timestamps of the vehicles in the reference data and calculating velocity errors. Separate cases are considered where drivers follow Intelligent Driver Model perfectly and with varying levels of uncertainty.","PeriodicalId":201953,"journal":{"name":"International Conference on Simulation of Urban Mobility","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115571963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Co-simulation of the virtual vehicle in virtual traffic considering tactical driver decisions 考虑驾驶员战术决策的虚拟交通中虚拟车辆的联合仿真
International Conference on Simulation of Urban Mobility Pub Date : 2019-08-13 DOI: 10.29007/QZG2
J. Kaths, B. Schott, F. Chucholowski
{"title":"Co-simulation of the virtual vehicle in virtual traffic considering tactical driver decisions","authors":"J. Kaths, B. Schott, F. Chucholowski","doi":"10.29007/QZG2","DOIUrl":"https://doi.org/10.29007/QZG2","url":null,"abstract":"Recent developments such as increasing automation and connectivity of vehicles as well as new regulations for real driving emissions lead to a stronger consideration of traffic and traffic control in automotive development. The increasing complexity of vehicular systems requires a highly virtualized development process. Therefore, a cosimulation solution of DYNA4’s virtual vehicle with SUMO’s microscopic traffic is presented here. Despite increasing automation, virtual test drives often still require a virtual test driver. Thus, the co-simulation solution is extended by combining the driver models of both tools. The operational decision making level of DYNA4 is extended by SUMO’s tactical driver decisions, aiming at virtual test drives in complex surrounding traffic with realistic reaction on traffic and traffic control and reduced parametrization effort. By comparing two variants it is shown that a higher reference speed and more aggressive lane change parameters lead to an increase of usage of the left lane and an increase in achieved speeds.","PeriodicalId":201953,"journal":{"name":"International Conference on Simulation of Urban Mobility","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124768205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Testing an Adaptive Cruise Controller with coupled traffic and driving simulations 基于交通和驾驶模拟的自适应巡航控制器测试
International Conference on Simulation of Urban Mobility Pub Date : 2019-08-13 DOI: 10.29007/84rc
Mirko Barthauer, A. Hafner
{"title":"Testing an Adaptive Cruise Controller with coupled traffic and driving simulations","authors":"Mirko Barthauer, A. Hafner","doi":"10.29007/84rc","DOIUrl":"https://doi.org/10.29007/84rc","url":null,"abstract":"In many cases, driving simulator studies target how test persons interact with surrounding traffic and with traffic signals. Traffic simulations like SUMO specialize in modeling traffic flow, which includes signal control. Consequently, driving and traffic simulation are coupled to benefit from the advantages of both. This means that all except the driven (ego) vehicle are controlled by the traffic simulation. Essential vehicle dynamics data are exchanged and applied frequently to make the test person interact with SUMO-generated traffic. Additionally, traffic lights are controlled by SUMO and transferred to the driving simulation. The system is used to evaluate an Adaptive Cruise Control (ACC) system, which considers current and future traffic light states. Measures include objective terms like traffic flow as well as the subjective judgement of the signal program, the ACC and the simulation environment.","PeriodicalId":201953,"journal":{"name":"International Conference on Simulation of Urban Mobility","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124774749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Bridging the Gap between SUMO & Kuksa: Using A Traffic Simulator for Testing Cloud-based Connected Vehicle Services 弥合SUMO和Kuksa之间的差距:使用交通模拟器测试基于云的联网汽车服务
International Conference on Simulation of Urban Mobility Pub Date : 2019-08-13 DOI: 10.29007/9KKV
Philipp Heisig, S. Jeroschewski, Johannes Kristan, Robert Höttger, A. Banijamali, S. Sachweh
{"title":"Bridging the Gap between SUMO & Kuksa: Using A Traffic Simulator for Testing Cloud-based Connected Vehicle Services","authors":"Philipp Heisig, S. Jeroschewski, Johannes Kristan, Robert Höttger, A. Banijamali, S. Sachweh","doi":"10.29007/9KKV","DOIUrl":"https://doi.org/10.29007/9KKV","url":null,"abstract":"The emerging usage of connected vehicles promises new business models and a high level of innovation, but also poses new challenges for the automotive domain and in particular for the connectivity dimension, i. e. the connection between vehicles and cloud environments including the architecture of such systems. Among other challenges, IoT Cloud platforms and their services have to scale with the number of vehicles on the road to provide functionality in a reliable way, especially when dealing with safety-related functions. Testing the scalability, functionality, and availability of IoT Cloud platform architectures for connected vehicles requires data from real world scenarios instead of hypothetical data sets to ensure both the proper functionality of distinct connected vehicle services and that the architecture scales with a varying number of vehicles. However, the closed and proprietary nature of current connected vehicle solutions aggravate the availability of both vehicle data and test environments to evaluate different architectures and cloud solutions. Thus, this paper introduces an approach for connecting the Eclipse SUMO traffic simulation with the open source connected vehicle ecosystem Eclipse Kuksa. More precisely, Eclipse SUMO is used to simulate traffic scenarios including microscopic properties like the position or emission. The generated data of each vehicle is then be sent to the message gateway of the Kuksa IoT Cloud platform and delegated to an according example service that consumes the data. In this way, not only the scalability of connected vehicle IoT architectures can be tested based on real world scenarios, but also the functionality of cloud services can be ensured by providing context-specific automotive data that goes beyond rudimentary or fake data-sets. M. Weber, L. Bieker-Walz, R. Hilbrich and M. Behrisch (eds.), SUMO2019 (EPiC Series in Computing, vol. 62), pp. 213–229 Bridging SUMO & Kuksa Heisig, Jeroschewski, Kristan, Höttger, Banijamali and Sachweh","PeriodicalId":201953,"journal":{"name":"International Conference on Simulation of Urban Mobility","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122854698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信