{"title":"On the influence of electrode surfaces on the plasma chemistry of a capacitive chlorine discharge","authors":"B Mahdavipour and J T Gudmundsson","doi":"10.1088/1361-6595/ad51a4","DOIUrl":"https://doi.org/10.1088/1361-6595/ad51a4","url":null,"abstract":"One-dimensional particle-in-cell/Monte Carlo collisional simulations are performed on capacitive chlorine discharges with 2.54 cm gap rf driven by a sinusoidal with voltage amplitude of 222 V at driving frequency of 13.56 MHz. The properties of the discharge, the reaction rates for creation and loss of a few key species, the electron energy probability function, and the primary electron power absorption processes are explored as the gas pressure and the inclusion of secondary electron emission processes in the discharge model is varied. Five cases are investigated, including and neglecting electron, ion, and fast neutrals induced secondary electron emission. The negative ion Cl− is almost entirely created by dissociative attachment and lost through ion-ion recombination, and therefore the capacitive chlorine discharge is recombination dominated.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"2015 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electron trapping efficiency of a magnetron sputtering cathode","authors":"Mostafa Salahshoor","doi":"10.1088/1361-6595/ad52c0","DOIUrl":"https://doi.org/10.1088/1361-6595/ad52c0","url":null,"abstract":"A common feature of all types of magnetron sputtering (MS) assemblies is an effective confinement of electrons by an appropriate combination of electric and magnetic fields. Therefore, studying the motions of electrons in the fields of magnetron assemblies is of particular importance. Here, we systematically analyze the electrons motions in front of a typical DC MS cathode. We first calculate the profiles of the magnetron’s magnetic field for balanced and two types of unbalanced configurations. Then, we compute the profiles of the cathode’s electric field before the gas discharge and after the plasma formation. A semi-analytical model is utilized to compute the plasma potential. We then track the motions of electrons released from the target and electrons produced through impact ionization of the background gas in the prescribed fields. A Monte Carlo model is implemented to consider electron-gas collisions and a mixed boundary condition is employed to account for electron-wall interactions. The study analyzes the impact of field profiles on the cathode’s efficiency in trapping electron by examining electron escape from the magnetic trap and electron recapture at the target surface. It is shown that the presence of plasma in all configurations leads to a significant increase in the trapping efficiency and the ionization performance, as well as a decrease in the recapture probability. These effects are attributed to the high electric field developed in the cathode sheath. Moreover, we statistically analyze the trapping efficiency by illustrating the spatial distributions of electrons locations in both axial and radial dimensions. It is demonstrated that during their azimuthal drift motion, the electrons released from the middle region at the target surface have the smallest range of axial and radial locations, in all configurations in the absence of plasma. Finally, the impact of field profiles on the average energies of electrons is discussed.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucas Fuster, R. Pascaud, J. Sokoloff, Gerjan J M Hagelaar, Patrick Hoffmann, Olivier Pascal, Thierry Callegari
{"title":"Microwave plasma interaction in a printed transmission line for a power limiting application : from surface-wave-sustained to leaky-wave-sustained discharge.","authors":"Lucas Fuster, R. Pascaud, J. Sokoloff, Gerjan J M Hagelaar, Patrick Hoffmann, Olivier Pascal, Thierry Callegari","doi":"10.1088/1361-6595/ad53fd","DOIUrl":"https://doi.org/10.1088/1361-6595/ad53fd","url":null,"abstract":"\u0000 The coupling between a microwave signal and a plasma discharge in a suspended microstrip transmission line is analytically studied. Maxwell's equations are solved in a 2D approximation to get the expressions of the electromagnetic field. The wave propagation in the guiding structure is first explored without plasma, and for several modes and frequencies. A unified characterization of the three different modes that can propagate at the interface between two dielectric media, namely the leaky waves, the pseudo-surface wave and the pure surface wave, is given in terms of of both wave vectors and electromagnetic field magnitude distribution. This analyze allow to conclude that the fundamental mode in this case is a pseudo-surface wave. Thereafter, we focus on the microwave propagation with a uniform plasma inside the guiding structure. In the non collisional limit, it appears that the plasma discharge is sustained by the so-called pure surface wave, whereas in the collisional limit, a leaky wave propagates along the plasma column. Finally, a non-uniform density profile is taken into account in the calculation. The numerical results obtained from the self-consistent simulation of the microwave-plasma coupling, in a previous work, are thus analyzed with the aid of the analytical formulas to identify the microwave coupling involved in our plasma-based microwave power limiter. The computed propagation constant from numerical data confirmed the type of coupling exhibited for a uniform electron density. Furthermore, we highlight the role of the dielectric slab, from which electromagnetic power transfer occurs into the plasma discharge.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141266453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kateryna Barynova, Martin Rudolph, S. Babu, J. Fischer, D. Lundin, M. Raadu, N. Brenning, Jon Tomas Gudmundsson
{"title":"On working gas rarefaction in high power impulse magnetron sputtering","authors":"Kateryna Barynova, Martin Rudolph, S. Babu, J. Fischer, D. Lundin, M. Raadu, N. Brenning, Jon Tomas Gudmundsson","doi":"10.1088/1361-6595/ad53fe","DOIUrl":"https://doi.org/10.1088/1361-6595/ad53fe","url":null,"abstract":"\u0000 The ionization region model (IRM) is applied to explore working gas rarefaction in high power impulse magnetron sputtering discharges operated with graphite, aluminum, copper, titanium, zirconium, and tungsten targets. For all cases the working gas rarefaction is found to be significant, the degree of working gas rarefaction reaches values of up to 83 %. The various contributions to working gas rarefaction, including electron impact ionization, kick-out by the sputtered species or hot argon atoms, and diffusion, are evaluated and compared for the different target materials, and over a range of discharge current densities. The relative importance of the various processes varies between different target materials. In the case of a graphite target with argon as the working gas at 1 Pa, electron impact ionization (by both primary and secondary electrons) is the dominating contributor to working gas rarefaction, with over 90 % contribution, while the contribution of sputter wind kick-out is small < 10 %. In the case of copper and tungsten targets, the kick-out dominates, with up to ∼60 % contribution at 1 Pa. For metallic targets the kick-out is mainly due to metal atoms sputtered from the target, while for the graphite target the small kick-out contribution is mainly due to kick-out by hot argon atoms and to a smaller extent by carbon atoms. The main factors determining the relative contribution of the kick-out by the sputtered species to working gas rarefaction appear to be the sputter yield and the working gas pressure.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"16 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141266856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biemeng Jin, Jian Chen, Guang-Yu Sun, Zhibin Wang, Haomin Sun
{"title":"Oblique streaming waves observed in multipactor-induced plasma discharge above a dielectric surface","authors":"Biemeng Jin, Jian Chen, Guang-Yu Sun, Zhibin Wang, Haomin Sun","doi":"10.1088/1361-6595/ad53ff","DOIUrl":"https://doi.org/10.1088/1361-6595/ad53ff","url":null,"abstract":"\u0000 In a recent discovery (Phys. Rev. Lett. 129, 045001, 2022), streaming waves were found in multipactor-induced plasma discharges. However, due to the limitations of a 1D simulation setup, these waves displayed only transverse dynamics. In this letter, an extended 2D particle-in-cell/Monte Carlo model is used to simulate multipactor-induced plasma discharge above a dielectric surface. The results reveal that the streaming waves are not solely transverse but oblique, featuring both transverse and longitudinal components of the wave vector. Furthermore, it is identified that the sheath-accelerated field-emission electrons, rather than the previously reported secondary emission electrons, predominantly cause the excitation of streaming waves. The simulated wave spectrum achieves an excellent agreement with the theoretical dispersion relation. The identification of oblique streaming waves provides new insights into multipactor physics and is anticipated to inspire novel mitigation strategies for multipactor-induced breakdown processes.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141266097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surong Sun, Fei Chen, Yu-Hang Zheng, Chao Wang, Hai-Xing Wang
{"title":"Experimental study on the discharge characteristics of air rotating gliding arc","authors":"Surong Sun, Fei Chen, Yu-Hang Zheng, Chao Wang, Hai-Xing Wang","doi":"10.1088/1361-6595/ad5401","DOIUrl":"https://doi.org/10.1088/1361-6595/ad5401","url":null,"abstract":"\u0000 In this study, the discharge characteristics of air rotating gliding arc are investigated by the synchronous measurements of digital oscilloscope and high-speed camera, and emission spectrum. The discharge evolution in one complete motion cycle exhibits “breakdown-elongation-extinction” process accompanied by the jump of arc root and back-breakdown phenomenon. The discharge evolves from the unstable breakdown mode (U-B), to the transition mode and finally to the stable gliding mode (S-G) by increasing the input voltage or decreasing the tangential and axial gas flow rates. The U-B mode at the input voltage of 120 V is featured by the large reduced electric field and high electron temperature of 1.90 eV, but the arc length and existence time are very short. The S-G mode at the input voltage of 270 V has relatively low breakdown frequency of 0.33 kHz and average breakdown current of 1.31 A, implying that the arc steadily glides and rotates along the spiral electrode. The average electron temperature is 0.64 eV in S-G mode, while the arc length and existence time are longer. The rotational and vibrational temperatures of N2 state are respectively measured to 2200 K and 4400 K in U-B mode, and in S-G mode are 2600 K and 4820 K. From the evolution of emission intensities of measured excited species, it is found that the NOγ band emission intensity generally rises from U-B mode to S-G mode since the gas temperature and arc existence time rise, indicating that S-G mode may be beneficial for the vibrationally-promoted Zeldovich reactions. This study could deepen the understanding of arc characteristics in air rotating gliding arc for selecting a suitable mode to achieve better plasma performance in practical applications.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"82 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141268409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasma dynamics of individual HiPIMS pulses: imaging study using high-frame-rate camera","authors":"Matjaž Panjan","doi":"10.1088/1361-6595/ad4416","DOIUrl":"https://doi.org/10.1088/1361-6595/ad4416","url":null,"abstract":"A high-frame-rate camera with microsecond-level time resolution was used to make systematic investigations of plasma self-organization and spoke dynamics during individual HiPIMS pulses. The plasma was imaged for a range of argon pressures (0.25–2 Pa) and peak discharge currents (10–400 A) using an Al target. The experiments revealed that plasma evolves through three characteristic stages as the discharge current increases. In stage I, which is present from the current onset and up to ∼25 A, spokes are azimuthally long and rotate in the −Ez× B direction. The spoke behavior is similar to the one observed in DCMS discharges. The number of spokes depends on pressure and the current growth rate. At the lowest pressure (0.25 Pa) a single spoke is present in discharge, while at higher pressures (1–2 Pa) two spokes are most often observed. The spoke velocity depends on the number of spokes, current growth rate and pressure. A single spoke rotates with velocities in the 4–15 km s−1 range, while two spokes rotate in the 1–9 km s−1 range depending on the pressure and growth rate. Following stage I, the plasma undergoes a complex reorganization that is characterized by aperiodic spoke patterns and irregular dynamics. In stage II spokes are less localized, they merge, split and propagate either in the retrograde or prograde direction. After chaotic plasma reorganization, more ordered spoke patterns begin to form. Spokes in stage III are azimuthally shorter, typically exhibit a triangular shape and rotate in the Ez× B direction. In general, the spoke dynamics is less complicated and is only influenced by the pressure. Spokes rotate faster at higher pressures than at lower ones; velocities range from 9 km s−1 at 0.25 Pa to 6 km s−1 at 2 Pa. The spoke velocity in stage III is largely unaffected by the discharge current or number of spokes. Stage III can be further divided into sub-stages, which are characterized by different current growth rates, spoke sizes and shapes. In general, the spoke evolution is highly reproducible for pulses with similar discharge current waveforms.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"94 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141152905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulation of low-current DC discharges in longitudinal flows of atmospheric-pressure air","authors":"N Yu Babaeva and G V Naidis","doi":"10.1088/1361-6595/ad4588","DOIUrl":"https://doi.org/10.1088/1361-6595/ad4588","url":null,"abstract":"Characteristics of low-current stationary axially symmetric discharges in longitudinal laminar flows of atmospheric-pressure air calculated in the framework of a two-dimensional model are presented. Non-equilibrium discharge regimes, in the current range from 1 to 100 mA, are considered for gas flow velocities up to 50 m s−1. It is shown that variation of the flow velocity substantially affects the discharge characteristics, such as the width of discharge column, the electric field inside the gap, the current density etc. Validity of the obtained results is confirmed by their comparison with available experimental data.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electric field measurement in DC corona discharge in atmospheric pressure air using E-FISHG and laser-triggering methods","authors":"Shin Nakamura, Masataka Sogame, Masahiro Sato, Takashi Fujii and Akiko Kumada","doi":"10.1088/1361-6595/ad4670","DOIUrl":"https://doi.org/10.1088/1361-6595/ad4670","url":null,"abstract":"Electric field measurement using electric-field-induced second-harmonic generation (E-FISHG) draws attention because of its non-invasiveness and is increasingly being applied to various discharge plasmas. However, measurement accuracy of previous studies is unclear since approximations in calibration are inadequate. Therefore, we have developed a measurement and analysis method that does not require approximations and can furthermore obtain the distribution of the electric field. To demonstrate the applicability of the proposed method to discharge plasmas, in this paper, we measure the electric field as a result of the space charge generated by DC corona discharge in atmospheric pressure air and validate the results by comparing them with those obtained using the laser-triggering method. We demonstrate that the electrostatic field and electric field resulting from the space charge can be measured with a difference of about 10% between the results obtained from the laser triggering method and E-FISHG method. The proposed method holds potential for applications in discharge plasmas.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140928564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On double-layer and reverse discharge creation during long positive voltage pulses in a bipolar HiPIMS discharge","authors":"A D Pajdarová, T Kozák, T Tölg and J Čapek","doi":"10.1088/1361-6595/ad3e29","DOIUrl":"https://doi.org/10.1088/1361-6595/ad3e29","url":null,"abstract":"Time-resolved Langmuir probe diagnostics at the discharge centerline and at three distances from the target ( , , and ) was carried out during long positive voltage pulses (a duration of and a preset positive voltage of ) in bipolar high-power impulse magnetron sputtering of a Ti target (a diameter of ) using an unbalanced magnetron. Fast-camera spectroscopy imaging recorded light emission from Ar and Ti atoms and singly charged ions during positive voltage pulses. It was found that during the long positive voltage pulse, the floating and the plasma potentials suddenly decrease, which is accompanied by the presence of anode light located on the discharge centerline between the target center and the magnetic null of the magnetron’s magnetic field. These light patterns are related to the ignition of a reverse discharge, which leads to the subsequent rise in the plasma and the floating potentials. The reversed discharge is burning up to the end of the positive voltage pulse, but the plasma and floating potentials have lower values than the values from the initial part of the positive voltage pulse. Secondary electron emission induced by the impinging Ar+ ions to the grounded surfaces in the vicinity of the discharge plasma together with the mirror configuration of the magnetron magnetic field are identified as the probable causes of the charge double-layer structure formation in front of the target and the ignition of the reverse discharge.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}