Min-Seok Kim, Jiwon Jung, Junyoung Park, Chin-Wook Chung
{"title":"Abnormal behavior of the plasma potential in an inductively coupled plasma with a DC-biased grid","authors":"Min-Seok Kim, Jiwon Jung, Junyoung Park, Chin-Wook Chung","doi":"10.1088/1361-6595/ad6cf1","DOIUrl":"https://doi.org/10.1088/1361-6595/ad6cf1","url":null,"abstract":"\u0000 The formation of the plasma potential and the generation mechanism of very low electron temperature plasma are investigated in an inductively coupled plasma (ICP) with a DC biased grid. The electron temperature is controlled from 2.4 eV to 0.2 eV according to the grid voltage (10 V to -40 V). Interestingly, when the grid voltage is negatively biased, the electron temperature decreases and the plasma potential decreases with the grid voltage, but then increases below -10 V which is abnormal. This behavior of the plasma potential is abnormal since the plasma potential is generally proportional to the electron temperature. The main reason for the abnormal increase of the plasma potential is the difference in the flux of electrons and ions below the grid. As the grid is negatively biased, the electron flux is greatly reduced compared to the ion flux, leading to an increase in plasma potential. After -20 V, the plasma potential saturates, because although the number of electrons entering the grid decreases, the electron flux is maintained by secondary electrons generated in the grid mesh. This abnormal increase in plasma potential decreases with pressure. An increase in plasma potential with gas species is also observed. The same behavior is observed for Ar, He, and N2 gases. The abnormal behavior of the plasma potential is explained with the current continuity.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"22 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141928727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S Chouteau, A Durocher-Jean, A Granier, M Richard-Plouet, L Stafford
{"title":"Time-resolved analysis of Ar metastable and electron populations in low-pressure misty plasma processes using optical emission spectroscopy","authors":"S Chouteau, A Durocher-Jean, A Granier, M Richard-Plouet, L Stafford","doi":"10.1088/1361-6595/ad5d11","DOIUrl":"https://doi.org/10.1088/1361-6595/ad5d11","url":null,"abstract":"Misty plasmas have recently emerged as a promising tool for nanocomposite thin films deposition. However, aerosol-plasma interactions remain poorly documented, especially at low working pressure. In this work, optical emission spectroscopy is used to probe the temporal evolution of three fundamental plasma parameters during pulsed liquid injection in an inductively coupled argon plasma at low-pressure. Time-resolved values of metastable argon density, electron temperature, and electron density are determined from radiation trapping analysis and particle balance equations of selected argon 1s and 2p levels. Pulsed liquid injection is found to induce a sudden drop in metastable density and electron temperature, and an increase in electron density. These results are attributed to the lower ionization thresholds of the injected molecular species compared to the one of argon. In addition, upstream liquid temperature is found to affect the transitory kinetics for non-volatile solvents more than volatile ones, in accordance with a previously reported flash boiling atomization mechanism.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A non-neutral 1D fluid model of hall thruster discharges: full electron inertia and anode sheath reversal","authors":"D Poli, P Fajardo and E Ahedo","doi":"10.1088/1361-6595/ad6500","DOIUrl":"https://doi.org/10.1088/1361-6595/ad6500","url":null,"abstract":"A non-neutral model (NNM) of the axial plasma discharge in a Hall thruster, including full electron inertia, is presented. In the finite-volume formulation, two types of sheath boundary conditions previously used in the literature are tested and proven to behave practically identically in this model. Both normal and reversed (i.e. electron repelling and attracting, respectively) anode sheaths are admitted. This model is compared with the quasineutral model developed in a previous work, which includes only azimuthal electron inertia and normal anode sheaths. Both models agree excellently within the parametric region where steady-state solutions with a normal anode sheath exist. The NNM shows the absence of steady-state solutions with a reversed anode sheath. Nonetheless, a reversed sheath can appear during the transient to a steady-state solution with a normal sheath and the periodic transition from a normal to a reversed sheath can be observed in the presence of breathing-mode oscillations. In other cases, the reversed sheath leads to the discharge shut-off. Full electron inertia is always important in the presence of a reversed sheath. The parametric threshold of the wall accommodation parameter from a stationary solution to a breathing mode one differs slightly between the non-neutral and the quasi-neutral model.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"69 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141773826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ibrahim Sadiek, Alexander Puth, Grzegorz Kowzan, Akiko Nishiyama, Sarah-Johanna Klose, Jürgen Röpcke, Norbert Lang, Piotr Masłowski and Jean-Pierre H van Helden
{"title":"Precision spectroscopy of non-thermal molecular plasmas using mid-infrared optical frequency comb Fourier transform spectroscopy","authors":"Ibrahim Sadiek, Alexander Puth, Grzegorz Kowzan, Akiko Nishiyama, Sarah-Johanna Klose, Jürgen Röpcke, Norbert Lang, Piotr Masłowski and Jean-Pierre H van Helden","doi":"10.1088/1361-6595/ad5df4","DOIUrl":"https://doi.org/10.1088/1361-6595/ad5df4","url":null,"abstract":"Non-thermal molecular plasmas play a crucial role in numerous industrial processes and hold significant potential for driving essential chemical transformations. Accurate information about the molecular composition of the plasmas and the distribution of populations among quantum states is essential for understanding and optimizing plasma processes. Here, we apply a mid-infrared frequency comb-based Fourier transform spectrometer to measure high-resolution spectra of plasmas containing hydrogen, nitrogen, and a carbon source in the 2800–3400 cm–1 range. The spectrally broadband and high-resolution capabilities of this technique enable quantum-state-resolved spectroscopy of multiple plasma-generated species simultaneously, including CH4, C2H2, C2H6, NH3, and HCN, providing detailed information beyond the limitations of current methods. Using a line-by-line fitting approach, we analyzed 548 resolved transitions across five vibrational bands of plasma-generated HCN. The results indicate a significant non-thermal distribution of the populations among the quantum states, with distinct temperatures observed for lower and higher rotational quantum numbers, with a temperature difference of about 62 K. Broadband state-resolved-spectroscopy via comb-based methods provides unprecedented fundamental insights into the non-thermal nature of molecular plasmas—a detailed picture that has never been accomplished before for such complex non-thermal environment.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141720069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seong-Cheol Huh, Jin Hee Bae, Hyungyu Lee, Jinwoo Kim, Wonho Choe and Sanghoo Park
{"title":"Individual quantification of ozone and reactive nitrogen species in mixtures by broadband UV–visible absorption spectra deconvolution","authors":"Seong-Cheol Huh, Jin Hee Bae, Hyungyu Lee, Jinwoo Kim, Wonho Choe and Sanghoo Park","doi":"10.1088/1361-6595/ad5ebb","DOIUrl":"https://doi.org/10.1088/1361-6595/ad5ebb","url":null,"abstract":"Ozone (O3), nitrogen oxides (NOx), and reactive nitrogen species (RNS) play critical roles in atmospheric-pressure plasma applications. Although it is crucial to individually quantify these species to understand atmospheric-pressure plasmas and increase their effectiveness, the lack of reliable and cost-effective diagnostics makes this difficult for many researchers. To address this problem, we introduce a new deconvolution method of broadband ultraviolet–visible absorption spectra for the simultaneous measurement of eight species—O3, NO, NO2, NO3, N2O4, N2O5, HONO, and HNO3. Processing of broadband spectra enables deconvolution of similar cross-section profiles and measurement of high densities exceeding the instrumental limit. Novel correction processes enable accurate analysis despite incomplete cross-section data and utilize a priori chemical knowledge to ensure theoretically reasonable results. Two case studies test the efficacy of the method: NO2 and N2O4 equilibria, and reactive species produced by a surface dielectric barrier discharge. With an analysis time of 15–20 ms per spectrum, the measured densities agree well with other theoretical and experimental results, and detection limits on the order of ppmv were achieved with a short path length of 15 cm. This spectral analysis method will facilitate the real-time monitoring of O3, NOx, and RNS in many scientific research and industrial applications of atmospheric pressure plasmas.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chong-Biao Tian, Li Wang, Máté Vass, Xiao-Kun Wang, Wan Dong, Yuan-Hong Song, You-Nian Wang and Julian Schulze
{"title":"The detachment-induced mode in electronegative capacitively coupled radio-frequency plasmas","authors":"Chong-Biao Tian, Li Wang, Máté Vass, Xiao-Kun Wang, Wan Dong, Yuan-Hong Song, You-Nian Wang and Julian Schulze","doi":"10.1088/1361-6595/ad5df8","DOIUrl":"https://doi.org/10.1088/1361-6595/ad5df8","url":null,"abstract":"Insights into the spatio-temporally resolved electron power absorption dynamics in capacitively coupled radio-frequency plasmas are essential for understanding the fundamentals of their operation and as a basis for knowledge-based plasma process development. Similar to the γ-mode, an ionization maximum is observed at the sheath edge around the time of maximum sheath voltage in electronegative oxygen discharges at a pressure of 300 Pa. Based on Particle-in-Cell/Monte Carlo Collisions (PIC/MCC) simulations, we demonstrate that this maximum is not only caused by secondary electrons emitted at the electrode and collisionally multiplied inside the sheath. In fact, it also occurs in the complete absence of secondary electrons in the simulation, and is caused by the generation of ions by electron attachment close to the electrode during the local sheath collapse. These negative ions are accelerated towards the plasma bulk by the sheath electric field during sheath expansion. By electron detachment from these negative ions, electrons are generated inside the sheath and are accelerated towards the plasma bulk by the instantaneous sheath electric field—similarly to secondary electrons. Ionization is also observed in the plasma bulk and caused by electrons generated by detachment and accelerated by the high drift-and ambipolar electric fields. This detachment-induced electron power absorption is found to have significant effects on the discharge in the presence and absence of secondary electron emission. Its fundamentals are understood based on an analysis of the spatio-temporal electron and power absorption dynamics as well as the trajectory of selected ions close to the electrode.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pedro A S Randi, Giseli M Moreira and Márcio H F Bettega
{"title":"Elastic cross section data for precursor molecules used in low-temperature plasmas: Sn(CH3)4 and Ga(CH3)3","authors":"Pedro A S Randi, Giseli M Moreira and Márcio H F Bettega","doi":"10.1088/1361-6595/ad5d13","DOIUrl":"https://doi.org/10.1088/1361-6595/ad5d13","url":null,"abstract":"Tetramethyltin [Sn(CH3)4] and trimethylgallium [Ga(CH3)3] are important source molecules of Sn and Ga atoms which are used in manufacturing techniques involving low-temperature plasmas. Accurate numerical modeling of plasma environments requires a comprehensive set of electron scattering cross sections by these precursor molecules. Here, we report the elastic integral, differential, and momentum transfer cross sections for electron collisions with Sn(CH3)4 and Ga(CH3)3 for energies ranging from 0 to 30 eV. Our calculations were carried out with the Schwinger multichannel method implemented with pseudopotentials and considered two levels of approximation in our calculations, namely static-exchange and static-exchange plus polarization. We identified three shape resonances for Sn(CH3)4 and one clear low-lying resonance for Ga(CH3)3. The low-energy behavior of the s-wave cross section and eigenphase was investigated and, for both molecules, we found evidence of a Ramsauer–Townsend (RT) minimum and a virtual state. Our results indicate that negative differential conductivity would occur in a gas composed of Sn(CH3)4. On the other hand, this effect would be suppressed in a gas of Ga(CH3)3 due to an overlap between the position of the RT minimum and the shape resonance in the momentum-transfer cross section.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141570101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shimin Yu, Hao Wu, Shali Yang, Lu Wang, Zhipeng Chen, Zhijiang Wang, Wei Jiang, Julian Schulze and Ya Zhang
{"title":"Kinetic simulations of capacitively coupled plasmas driven by tailored voltage waveforms with multi-frequency matching","authors":"Shimin Yu, Hao Wu, Shali Yang, Lu Wang, Zhipeng Chen, Zhijiang Wang, Wei Jiang, Julian Schulze and Ya Zhang","doi":"10.1088/1361-6595/ad5df7","DOIUrl":"https://doi.org/10.1088/1361-6595/ad5df7","url":null,"abstract":"Impedance matching is crucial for optimizing plasma generation and reducing power reflection in capacitively coupled plasmas (CCP). Designing these matchings is challenging due to the varying and typically unknown impedance of the plasma, especially in the presence of multiple driving frequencies. Here, a computational design method for impedance matching networks (IMNs) for CCPs is proposed and applied to discharges driven by tailored voltage waveforms (TVW). This method is based on a self-consistent combination of particle in cell/Monte Carlo collision simulations of the plasma with Kirchhoff’s equations to describe the external electrical circuit. Two Foster second-form networks with the same structure are used to constitute an L-type matching network, and the matching capability is optimized by iteratively updating the values of variable capacitors inside the IMN. The results show that the plasma density and the power absorbed by the plasma continuously increase in the frame of this iterative process of adjusting the matching parameters until an excellent impedance matching capability is finally achieved. Impedance matching is found to affect the DC self-bias voltage, whose absolute value is maximized when the best matching is achieved. Additionally, a change in the quality of the impedance matching is found to cause an electron heating mode transition. Poor impedance matching results in a heating mode where electron power absorption in the plasma bulk by drift electric fields plays an important role, while good matching results in the classical α-mode operation, where electron power absorption by ambipolar electric fields at the sheath edges dominates. The method proposed in this work is expected to be of great significance in promoting TVW plasma sources from theory to industrial application, since it allows designing the required complex multi-frequency IMNs.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141570103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevin Köhn, Dennis Krüger, Denis Eremin, Liang Xu and Ralf Peter Brinkmann
{"title":"Addendum: Thermodynamic quasi-equilibria in high power magnetron discharges: a generalized Poisson–Boltzmann relation (2023 Plasma Sources Sci. Technol. 32 055012)","authors":"Kevin Köhn, Dennis Krüger, Denis Eremin, Liang Xu and Ralf Peter Brinkmann","doi":"10.1088/1361-6595/ad5abd","DOIUrl":"https://doi.org/10.1088/1361-6595/ad5abd","url":null,"abstract":"A recent publication by Köhn et al (2023 Plasma Sources Sci. Technol.32 055012) studied the quasi-equilibria of high power magnetron discharges through thermodynamic principles. A generalized, magnetic-field aware Poisson–Boltzmann relation for the electric potential and the electron density was established using a non-standard (multi-objective) variational principle. This addendum demonstrates that, assuming slow or quasistatic evolution, the same result can be realized via a standard (single-objective) variational principle, thereby streamlining the theoretical framework while preserving the robustness of the finding.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulation on the effect of oxygen concentration on the positive secondary streamer generated in oxygen-rich nitrogen–oxygen mixtures under atmospheric pressure","authors":"Zhenyu Wei, Ryo Ono and Atsushi Komuro","doi":"10.1088/1361-6595/ad5932","DOIUrl":"https://doi.org/10.1088/1361-6595/ad5932","url":null,"abstract":"In this study, we investigated the effect of various concentrations, from 20% to 90%, in nitrogen–oxygen ( ) mixtures on the characteristics of secondary streamers. As oxygen molecules have different molecular characteristics from nitrogen molecules in terms of ionisation threshold and electron attachment property, streamer discharges generated under various nitrogen–oxygen ratios may exhibit differing characteristics such as electron density, electric field, and radical formation. We focused on the changes in these parameters in secondary streamers using simulations. Simulations were first performed under the same conditions as those in previous experiments to compare the results of the ozone production, discharge current, and discharge emission characteristics. To compare the ozone production characteristics, simulated O radicals–the precursor of ozone–were used in the simulation for simplicity. This comparison showed that, although the absolute values of each parameter were different, the simulation exhibited a similar trend in the case of the experimentally obtained oxygen concentration dependence. After the validity of the simulation was verified to some extent via a comparison with the experiment, the results obtained from the simulation were analysed in detail. The results showed that, although the electric field strength in the secondary streamer did not change much as the oxygen concentration increased, the decrease rate of the electron density was greatly accelerated by the electron attachment reaction of oxygen. As a result, many of the electrons had already dissipate during the development of the primary streamer, and few electrons remained when the secondary streamer was formed. This effect suggests that the ratio of the amount of O radicals produced in the primary streamer to that produced in the secondary streamer changes as the oxygen concentration changes.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}