Seong-Cheol Huh, Jin Hee Bae, Hyungyu Lee, Jinwoo Kim, Wonho Choe and Sanghoo Park
{"title":"Individual quantification of ozone and reactive nitrogen species in mixtures by broadband UV–visible absorption spectra deconvolution","authors":"Seong-Cheol Huh, Jin Hee Bae, Hyungyu Lee, Jinwoo Kim, Wonho Choe and Sanghoo Park","doi":"10.1088/1361-6595/ad5ebb","DOIUrl":null,"url":null,"abstract":"Ozone (O3), nitrogen oxides (NOx), and reactive nitrogen species (RNS) play critical roles in atmospheric-pressure plasma applications. Although it is crucial to individually quantify these species to understand atmospheric-pressure plasmas and increase their effectiveness, the lack of reliable and cost-effective diagnostics makes this difficult for many researchers. To address this problem, we introduce a new deconvolution method of broadband ultraviolet–visible absorption spectra for the simultaneous measurement of eight species—O3, NO, NO2, NO3, N2O4, N2O5, HONO, and HNO3. Processing of broadband spectra enables deconvolution of similar cross-section profiles and measurement of high densities exceeding the instrumental limit. Novel correction processes enable accurate analysis despite incomplete cross-section data and utilize a priori chemical knowledge to ensure theoretically reasonable results. Two case studies test the efficacy of the method: NO2 and N2O4 equilibria, and reactive species produced by a surface dielectric barrier discharge. With an analysis time of 15–20 ms per spectrum, the measured densities agree well with other theoretical and experimental results, and detection limits on the order of ppmv were achieved with a short path length of 15 cm. This spectral analysis method will facilitate the real-time monitoring of O3, NOx, and RNS in many scientific research and industrial applications of atmospheric pressure plasmas.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad5ebb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ozone (O3), nitrogen oxides (NOx), and reactive nitrogen species (RNS) play critical roles in atmospheric-pressure plasma applications. Although it is crucial to individually quantify these species to understand atmospheric-pressure plasmas and increase their effectiveness, the lack of reliable and cost-effective diagnostics makes this difficult for many researchers. To address this problem, we introduce a new deconvolution method of broadband ultraviolet–visible absorption spectra for the simultaneous measurement of eight species—O3, NO, NO2, NO3, N2O4, N2O5, HONO, and HNO3. Processing of broadband spectra enables deconvolution of similar cross-section profiles and measurement of high densities exceeding the instrumental limit. Novel correction processes enable accurate analysis despite incomplete cross-section data and utilize a priori chemical knowledge to ensure theoretically reasonable results. Two case studies test the efficacy of the method: NO2 and N2O4 equilibria, and reactive species produced by a surface dielectric barrier discharge. With an analysis time of 15–20 ms per spectrum, the measured densities agree well with other theoretical and experimental results, and detection limits on the order of ppmv were achieved with a short path length of 15 cm. This spectral analysis method will facilitate the real-time monitoring of O3, NOx, and RNS in many scientific research and industrial applications of atmospheric pressure plasmas.