Physical Review XPub Date : 2025-06-05DOI: 10.1103/physrevx.15.021082
Phattharaporn Singkanipa, Victor Kasatkin, Zeyuan Zhou, Gregory Quiroz, Daniel A. Lidar
{"title":"Demonstration of Algorithmic Quantum Speedup for an Abelian Hidden Subgroup Problem","authors":"Phattharaporn Singkanipa, Victor Kasatkin, Zeyuan Zhou, Gregory Quiroz, Daniel A. Lidar","doi":"10.1103/physrevx.15.021082","DOIUrl":"https://doi.org/10.1103/physrevx.15.021082","url":null,"abstract":"Simon’s problem is to find a hidden period (a bitstring) encoded into an unknown 2-to-1 function. It is one of the earliest problems for which an exponential quantum speedup was proven for ideal, noiseless quantum computers, albeit in the oracle model. Here, using two different 127-qubit IBM Quantum superconducting processors, we demonstrate an algorithmic quantum speedup for a variant of Simon’s problem where the hidden period has a restricted Hamming weight w</a:mi></a:math>. For sufficiently small values of <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>w</c:mi></c:math> and for circuits involving up to 58 qubits, we demonstrate an exponential speedup, albeit of a lower quality than the speedup predicted for the noiseless algorithm. The speedup exponent and the range of <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>w</e:mi></e:math> values for which an exponential speedup exists are significantly enhanced when the computation is protected by dynamical decoupling. Further enhancement is achieved with measurement error mitigation. This case constitutes a demonstration of a bona fide quantum advantage for an Abelian hidden subgroup problem. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"39 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144228572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review XPub Date : 2025-06-05DOI: 10.1103/physrevx.15.021083
Mengli Hu, Xingkai Cheng, Zhenqiao Huang, Junwei Liu
{"title":"Catalog of C -Paired Spin-Momentum Locking in Antiferromagnetic Systems","authors":"Mengli Hu, Xingkai Cheng, Zhenqiao Huang, Junwei Liu","doi":"10.1103/physrevx.15.021083","DOIUrl":"https://doi.org/10.1103/physrevx.15.021083","url":null,"abstract":"Antiferromagnetic materials (AFMs) have been gaining lots of attention due to their great potential in spintronics devices and the recently discovered novel spin structure in the momentum space, i.e., C</a:mi></a:mrow></a:math>-paired spin-valley or spin-momentum locking (CSML), where spins and valleys or momenta are locked to each other due to the crystal symmetry guaranteeing zero magnetization. Here, we systematically study CSMLs and propose a general theory and algorithm using little cogroup and coset representatives, which reveals that 12 elementary kinds of CSMLs, determined by the geometric relation of spins and valleys and the essential symmetry guaranteeing zero magnetization, are sufficient to fully represent all possible CSMLs. By combining the proposed algorithm and high-throughput first-principles calculations, we predict 38 magnetic point groups and identify 142 experimentally verified AFMs that can realize CSML. Besides predicting new materials, our theory can naturally reveal underlying mechanisms of CSMLs’ responses to external fields. As an example, two qualitatively different types of piezomagnetism via occupation imbalance or spin tilting are predicted in <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mrow><c:msub><c:mrow><c:mi>RbV</c:mi></c:mrow><c:mrow><c:mn>2</c:mn></c:mrow></c:msub></c:mrow><c:mrow><c:msub><c:mrow><c:mi>Te</c:mi></c:mrow><c:mrow><c:mn>2</c:mn></c:mrow></c:msub></c:mrow><c:mi mathvariant=\"normal\">O</c:mi></c:mrow></c:math>. The algorithm and conclusions can be directly extended to the locking between valley or momentum and any other pseudovector degree of freedom, e.g., Berry curvature, as exemplified in <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mrow><f:mrow><f:msub><f:mrow><f:mi>RbV</f:mi></f:mrow><f:mrow><f:mn>2</f:mn></f:mrow></f:msub></f:mrow><f:mrow><f:msub><f:mrow><f:mi>Te</f:mi></f:mrow><f:mrow><f:mn>2</f:mn></f:mrow></f:msub></f:mrow><f:mi mathvariant=\"normal\">O</f:mi></f:mrow></f:math> and the new proposed piezo-Hall effect, where a strain can induce a nonzero anomalous Hall conductance. In addition, the proposed concept and methodology can be straightforwardly applied to other symmetry groups, such as spin group. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"10 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144228524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review XPub Date : 2025-06-04DOI: 10.1103/physrevx.15.021080
Mads Weile, Sergii Grytsiuk, Aubrey Penn, Daniel G. Chica, Xavier Roy, Kseniia Mosina, Zdenek Sofer, Jakob Schiøtz, Stig Helveg, Malte Rösner, Frances M. Ross, Julian Klein
{"title":"Defect Complexes in CrSBr Revealed Through Electron Microscopy and Deep Learning","authors":"Mads Weile, Sergii Grytsiuk, Aubrey Penn, Daniel G. Chica, Xavier Roy, Kseniia Mosina, Zdenek Sofer, Jakob Schiøtz, Stig Helveg, Malte Rösner, Frances M. Ross, Julian Klein","doi":"10.1103/physrevx.15.021080","DOIUrl":"https://doi.org/10.1103/physrevx.15.021080","url":null,"abstract":"Atomic defects underpin the properties of van der Waals materials, and their understanding is essential for advancing quantum and energy technologies. Scanning transmission electron microscopy is a powerful tool for defect identification in atomically thin materials, and extending it to multilayer and beam-sensitive materials would accelerate their exploration. Here, we establish a comprehensive defect library in a bilayer of the magnetic quasi-1D semiconductor CrSBr by combining atomic-resolution imaging, deep learning, and calculations. We apply a custom-developed machine learning work flow to detect, classify, and average point vacancy defects. This classification enables us to uncover several distinct Cr interstitial defect complexes, combined Cr and Br vacancy defect complexes, and lines of vacancy defects that extend over many unit cells. We show that their occurrence is in agreement with our computed structures and binding energy densities, reflecting the intriguing layer interlocked crystal structure of CrSBr. Our calculations show that the interstitial defect complexes give rise to highly localized electronic states. These states are of particular interest due to the reduced electronic dimensionality and magnetic properties of CrSBr and are, furthermore, predicted to be optically active. Our results broaden the scope of defect studies in challenging materials and reveal new defect types in bilayer CrSBr that can be extrapolated to the bulk and to over 20 materials belonging to the same FeOCl structural family. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"5 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144219268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review XPub Date : 2025-06-04DOI: 10.1103/physrevx.15.021081
Jing Liang, Yuan Xie, Dongyang Yang, Shangyi Guo, Kenji Watanabe, Takashi Taniguchi, Jerry I. Dadap, David Jones, Ziliang Ye
{"title":"Nanosecond Ferroelectric Switching of Intralayer Excitons in Bilayer 3R−MoS2 through Coulomb Engineering","authors":"Jing Liang, Yuan Xie, Dongyang Yang, Shangyi Guo, Kenji Watanabe, Takashi Taniguchi, Jerry I. Dadap, David Jones, Ziliang Ye","doi":"10.1103/physrevx.15.021081","DOIUrl":"https://doi.org/10.1103/physrevx.15.021081","url":null,"abstract":"High-speed, nonvolatile tunability is critical for advancing reconfigurable photonic devices used in neuromorphic information processing, sensing, and communication. Despite significant progress in developing phase-change and ferroelectric materials, achieving highly efficient, reversible, rapid switching of optical properties has remained a challenge. Recently, sliding ferroelectricity has been discovered in 2D semiconductors, which also host strong excitonic effects. Here, we demonstrate that these materials enable nanosecond ferroelectric switching in the complex refractive index, substantially modulating their linear optical responses. The maximum index modulation reaches about 4, resulting in a relative reflectance change exceeding 85%. Both on and off switching occur within 2.5 ns, with switching energy at femtojoule levels. The switching mechanism is driven by tuning the excitonic peak splitting of a rhombohedral molybdenum disulfide bilayer in an engineered Coulomb screening environment. This new switching mechanism establishes a new direction for developing high-speed, nonvolatile optical memories and highly efficient, compact reconfigurable photonic devices. Additionally, the demonstrated imaging technique offers a rapid method to characterize domains and domain walls in 2D semiconductors with rhombohedral stacking. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"35 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144219266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review XPub Date : 2025-06-03DOI: 10.1103/physrevx.15.021079
Markus Nünnerich, Daniel Cohen, Patrick Barthel, Patrick H. Huber, Dorna Niroomand, Alex Retzker, Christof Wunderlich
{"title":"Fast, Robust, and Laser-Free Universal Entangling Gates for Trapped-Ion Quantum Computing","authors":"Markus Nünnerich, Daniel Cohen, Patrick Barthel, Patrick H. Huber, Dorna Niroomand, Alex Retzker, Christof Wunderlich","doi":"10.1103/physrevx.15.021079","DOIUrl":"https://doi.org/10.1103/physrevx.15.021079","url":null,"abstract":"A novel two-qubit entangling gate for trapped-ion quantum processors is proposed theoretically and demonstrated experimentally. During the gate, double-dressed quantum states are created by applying a phase-modulated continuous driving field. The speed of this quantum gate is an order of magnitude higher than that of previously demonstrated rf controlled two-qubit entangling gates in static magnetic field gradients. At the same time, the field driving the gate dynamically decouples the qubits from amplitude and frequency noise, increasing the qubits’ coherence time by 3 orders of magnitude. The gate requires only a single continuous rf field per qubit, making it well suited for scaling a quantum processor to large numbers of qubits. Implementing this entangling gate, we generate the Bell states |</a:mo>Φ</a:mi>+</a:mo></a:msup>⟩</a:mo></a:math> and <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mo stretchy=\"false\">|</f:mo><f:msup><f:mi mathvariant=\"normal\">Ψ</f:mi><f:mo>+</f:mo></f:msup><f:mo stretchy=\"false\">⟩</f:mo></f:math> in less than or equal to <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mn>313</k:mn><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi mathvariant=\"normal\">μ</k:mi><k:mi mathvariant=\"normal\">s</k:mi></k:mrow></k:math> with fidelities up to <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:msubsup><o:mn>98</o:mn><o:mrow><o:mo>−</o:mo><o:mn>3</o:mn></o:mrow><o:mrow><o:mo>+</o:mo><o:mn>2</o:mn></o:mrow></o:msubsup><o:mo>%</o:mo></o:math> in a static magnetic gradient of only <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mrow><q:mn>19.09</q:mn><q:mtext> </q:mtext><q:mtext> </q:mtext><q:mi mathvariant=\"normal\">T</q:mi><q:mo>/</q:mo><q:mi mathvariant=\"normal\">m</q:mi></q:mrow></q:math>. At higher magnetic field gradients, the entangling gate speed can be further improved to match that of laser-based counterparts. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"100 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144210961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review XPub Date : 2025-06-03DOI: 10.1103/physrevx.15.021078
Rahul Sahay, Mikhail D. Lukin, Jordan Cotler
{"title":"Emergent Holographic Forces from Tensor Networks and Criticality","authors":"Rahul Sahay, Mikhail D. Lukin, Jordan Cotler","doi":"10.1103/physrevx.15.021078","DOIUrl":"https://doi.org/10.1103/physrevx.15.021078","url":null,"abstract":"The AdS/CFT correspondence stipulates a duality between conformal field theories and certain theories of quantum gravity in one higher spatial dimension. However, probing this conjecture on contemporary classical or quantum computers is challenging. We formulate an efficiently implementable multiscale entanglement renormalization ansatz model of AdS/CFT, providing a mapping between a (1</a:mn>+</a:mo>1</a:mn></a:mrow></a:math>)-dimensional critical spin system and a (<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mn>2</c:mn><c:mo>+</c:mo><c:mn>1</c:mn></c:mrow></c:math>)-dimensional bulk theory. Using a combination of numerics and analytics, we show that the bulk theory arising from this optimized tensor network furnishes excitations with attractive interactions. Remarkably, these excitations have one- and two-particle energies matching the predictions for matter coupled to AdS gravity at long distances, thus displaying key features of AdS physics. We show that these potentials arise as a direct consequence of entanglement renormalization and discuss how this approach can be used to efficiently simulate bulk dynamics using realistic quantum devices. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"45 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144210962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review XPub Date : 2025-06-02DOI: 10.1103/physrevx.15.021077
Alexander Schmidhuber, Ryan O’Donnell, Robin Kothari, Ryan Babbush
{"title":"Quartic Quantum Speedups for Planted Inference","authors":"Alexander Schmidhuber, Ryan O’Donnell, Robin Kothari, Ryan Babbush","doi":"10.1103/physrevx.15.021077","DOIUrl":"https://doi.org/10.1103/physrevx.15.021077","url":null,"abstract":"We describe a quantum algorithm for the Planted Noisy k</a:mi>XOR</a:mi></a:math> Problem (also known as Sparse Learning Parity with Noise) that achieves a nearly (fourth-power) speedup over the best known classical algorithm while using exponentially less space. Our work generalizes and simplifies prior work of Hastings [], by building on his quantum algorithm for the tensor principal component analysis (PCA) problem. We achieve our quantum speedup using a general framework based on the Kikuchi method (recovering the quartic speedup for Tensor PCA), and we anticipate it will yield similar speedups for further planted inference problems. These speedups rely on the fact that planted inference problems naturally instantiate the guided sparse Hamiltonian problem. Since the Planted Noisy <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>k</c:mi><c:mi>XOR</c:mi></c:math> Problem has been used as a component of certain cryptographic constructions, our work suggests that some of these are susceptible to superquadratic quantum attacks. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"51 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144201803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review XPub Date : 2025-05-30DOI: 10.1103/physrevx.15.021076
Guoxin Zheng, Dechen Zhang, Yuan Zhu, Kuan-Wen Chen, Aaron Chan, Kaila Jenkins, Byungmin Kang, Zhenyuan Zeng, Aini Xu, D. Ratkovski, Joanna Blawat, Alimamy F. Bangura, John Singleton, Patrick A. Lee, Shiliang Li, Lu Li
{"title":"Thermodynamic Evidence of Fermionic Behavior in the Vicinity of One-Ninth Plateau in a Kagome Antiferromagnet","authors":"Guoxin Zheng, Dechen Zhang, Yuan Zhu, Kuan-Wen Chen, Aaron Chan, Kaila Jenkins, Byungmin Kang, Zhenyuan Zeng, Aini Xu, D. Ratkovski, Joanna Blawat, Alimamy F. Bangura, John Singleton, Patrick A. Lee, Shiliang Li, Lu Li","doi":"10.1103/physrevx.15.021076","DOIUrl":"https://doi.org/10.1103/physrevx.15.021076","url":null,"abstract":"The spin-1</a:mn>/</a:mo>2</a:mn></a:mrow></a:math> kagome Heisenberg antiferromagnets are believed to host exotic quantum entangled states. Recently, the reports of <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mn>1</c:mn><c:mo>/</c:mo><c:mn>9</c:mn></c:mrow></c:math> magnetization plateau and magnetic oscillations in a kagome antiferromagnet <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mrow><e:msub><e:mrow><e:mi>YCu</e:mi></e:mrow><e:mrow><e:mn>3</e:mn></e:mrow></e:msub></e:mrow><e:msub><e:mrow><e:mo stretchy=\"false\">(</e:mo><e:mrow><e:mi>OH</e:mi></e:mrow><e:mo stretchy=\"false\">)</e:mo></e:mrow><e:mrow><e:mn>6</e:mn></e:mrow></e:msub><e:mrow><e:msub><e:mrow><e:mi>Br</e:mi></e:mrow><e:mrow><e:mn>2</e:mn></e:mrow></e:msub></e:mrow><e:mo stretchy=\"false\">[</e:mo><e:msub><e:mrow><e:mtext>Br</e:mtext></e:mrow><e:mrow><e:mi>x</e:mi></e:mrow></e:msub><e:msub><e:mrow><e:mo stretchy=\"false\">(</e:mo><e:mrow><e:mi>OH</e:mi></e:mrow><e:mo stretchy=\"false\">)</e:mo></e:mrow><e:mrow><e:mn>1</e:mn><e:mo>−</e:mo><e:mi>x</e:mi></e:mrow></e:msub><e:mo stretchy=\"false\">]</e:mo></e:mrow></e:math> (YCOB) have made this material a promising candidate for experimentally realizing quantum spin liquid states. Here, we present measurements of the specific heat <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi>C</m:mi><m:mi>p</m:mi></m:msub></m:math> in YCOB in high magnetic fields (up to 41.5 T) down to 0.46 K, and the <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mrow><o:mn>1</o:mn><o:mo>/</o:mo><o:mn>9</o:mn></o:mrow></o:math> plateau feature has been confirmed. Moreover, the temperature dependence of <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:msub><q:mi>C</q:mi><q:mi>p</q:mi></q:msub><q:mo>/</q:mo><q:mi>T</q:mi></q:math> in the vicinity of <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mrow><s:mn>1</s:mn><s:mo>/</s:mo><s:mn>9</s:mn></s:mrow></s:math> plateau region can be fitted by a linear in <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>T</u:mi></u:math> term which indicates the presence of a Dirac spectrum, together with a constant term, which indicates a finite density of states contributed by other spinon Fermi surfaces. Surprisingly, the constant term is highly anisotropic in the direction of the magnetic field. Additionally, we observe a double-peak feature near 30 T above the <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mrow><w:mn>1</w:mn><w:mo>/</w:mo><w:mn>9</w:mn></w:mrow></w:math> plateau which is another hallmark of fermionic excitations in the specific heat. This combination of gapless behavior and the double-peak structure strongly suggests that the <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mrow><y:mn>1</y:mn><y:mo>/</y:mo><y:mn>9</y:mn></y:mrow></y:math> plateau in YCOB is nontri","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"11 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144184097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review XPub Date : 2025-05-30DOI: 10.1103/physrevx.15.021075
W. Knafo, T. Thebault, S. Raymond, P. Manuel, D. D. Khalyavin, F. Orlandi, E. Ressouche, K. Beauvois, G. Lapertot, K. Kaneko, D. Aoki, D. Braithwaite, G. Knebel
{"title":"Incommensurate Antiferromagnetism in UTe2 under Pressure","authors":"W. Knafo, T. Thebault, S. Raymond, P. Manuel, D. D. Khalyavin, F. Orlandi, E. Ressouche, K. Beauvois, G. Lapertot, K. Kaneko, D. Aoki, D. Braithwaite, G. Knebel","doi":"10.1103/physrevx.15.021075","DOIUrl":"https://doi.org/10.1103/physrevx.15.021075","url":null,"abstract":"The discovery of multiple superconducting phases in UTe</a:mi></a:mrow>2</a:mn></a:mrow></a:msub></a:mrow></a:math> boosted research on correlated-electron physics. This heavy-fermion paramagnet was rapidly identified as a reference compound to study the interplay between magnetism and unconventional superconductivity with multiple degrees of freedom. The proximity to a ferromagnetic quantum phase transition was initially proposed as a driving force to triplet-pairing superconductivity. However, we find here that long-range incommensurate antiferromagnetic order is established under pressure. The propagation vector <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi mathvariant=\"bold\">k</c:mi><c:mi mathvariant=\"bold\">m</c:mi></c:msub><c:mo>=</c:mo><c:mo stretchy=\"false\">(</c:mo><c:mn>0.07</c:mn><c:mo>,</c:mo><c:mn>0.33</c:mn><c:mo>,</c:mo><c:mn>1</c:mn><c:mo stretchy=\"false\">)</c:mo></c:math> of the antiferromagnetic phase is close to a wave vector where antiferromagnetic fluctuations have previously been observed at ambient pressure. These elements support that <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:msub><i:mrow><i:mi>UTe</i:mi></i:mrow><i:mrow><i:mn>2</i:mn></i:mrow></i:msub></i:mrow></i:math> is a nearly antiferromagnet at ambient pressure. Our work appeals for theories modeling the evolution of the magnetic interactions and electronic properties, driving a correlated paramagnetic regime at ambient pressure to a long-range antiferromagnetic order under pressure. A deeper understanding of itinerant-<k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>f</k:mi></k:math>-electron magnetism in <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:msub><m:mrow><m:mi>UTe</m:mi></m:mrow><m:mrow><m:mn>2</m:mn></m:mrow></m:msub></m:mrow></m:math> will be a key for describing its unconventional superconducting phases. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"41 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144184099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review XPub Date : 2025-05-30DOI: 10.1103/physrevx.15.021074
Yidi Wang, Hong Li, Siyu Cheng, He Zhao, Brenden R. Ortiz, Andrea Capa Salinas, Stephen D. Wilson, Ziqiang Wang, Ilija Zeljkovic
{"title":"Interplay of Nanoscale Strain and Smectic Susceptibility in Kagome Superconductors","authors":"Yidi Wang, Hong Li, Siyu Cheng, He Zhao, Brenden R. Ortiz, Andrea Capa Salinas, Stephen D. Wilson, Ziqiang Wang, Ilija Zeljkovic","doi":"10.1103/physrevx.15.021074","DOIUrl":"https://doi.org/10.1103/physrevx.15.021074","url":null,"abstract":"Exotic quantum solids can host electronic states that spontaneously break rotational symmetry of the electronic structure, such as electronic nematic phases and unidirectional charge density waves (CDWs). When electrons couple to the lattice, uniaxial strain can be used to anchor and control this electronic directionality. Here, we reveal an unusual impact of strain on unidirectional “smectic” CDW orders in kagome superconductors AV</a:mi></a:mrow>3</a:mn></a:msub>Sb</a:mi></a:mrow>5</a:mn></a:msub></a:mrow></a:math> using spectroscopic-imaging scanning tunneling microscopy. We discover local decoupling between the smectic electronic director axis and the direction of anisotropic strain. While the two can generally be aligned along the same direction in regions of a small CDW gap, the tendency for alignment decreases in regions where the CDW gap is the largest. This feature, in turn, suggests nanoscale variations in smectic susceptibility, which we attribute to a combination of local strain and electron correlation strength. Overall, we observe an unusually high decoupling rate between the smectic electronic director of the three-state Potts order and anisotropic strain, revealing weak smectoelastic coupling in the CDW phase of kagome superconductors. This finding is phenomenologically different from the extensively studied nematoelastic coupling in the Ising nematic phase of Ising nematic phase of Fe-based superconductor bulk single crystals, providing a contrasting picture of how strain can control electronic unidirectionality in different families of quantum materials. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"238 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144184096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}