Tommaso Antonelli, Marco Coraiola, David Christian Ohnmacht, Aleksandr E. Svetogorov, Deividas Sabonis, Sofieke C. ten Kate, Erik Cheah, Filip Krizek, Rüdiger Schott, Juan Carlos Cuevas, Wolfgang Belzig, Werner Wegscheider, Fabrizio Nichele
{"title":"探索四端Josephson结的能谱:朝向拓扑Andreev带结构","authors":"Tommaso Antonelli, Marco Coraiola, David Christian Ohnmacht, Aleksandr E. Svetogorov, Deividas Sabonis, Sofieke C. ten Kate, Erik Cheah, Filip Krizek, Rüdiger Schott, Juan Carlos Cuevas, Wolfgang Belzig, Werner Wegscheider, Fabrizio Nichele","doi":"10.1103/qd3y-f912","DOIUrl":null,"url":null,"abstract":"Hybrid multiterminal Josephson junctions (JJs) are expected to harbor a novel class of Andreev bound states (ABSs), including topologically nontrivial states in four-terminal devices. In these systems, topological phases emerge when ABSs depend on at least three superconducting phase differences, resulting in a three-dimensional (3D) energy spectrum characterized by Weyl nodes at zero energy. Here, we realize a four-terminal JJ in a hybrid Al</a:mi>/</a:mo>InAs</a:mi></a:mrow></a:math> heterostructure, where ABSs form a synthetic 3D band structure. We probe the energy spectrum using tunneling spectroscopy and identify spectral features associated with the formation of a tri-Andreev molecule, a bound state whose energy depends on three superconducting phases and, therefore, is able to host topological ABSs. The experimental observations are well described by a numerical model. The calculations predict the appearance of four Weyl nodes at zero energy within a gap smaller than the experimental resolution. These topological states are theoretically predicted to remain stable within an extended region of the parameter space, well accessible by our device. These findings establish an experimental foundation to study high-dimensional synthetic band structures in multiterminal JJs and to realize topological Andreev bands.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"35 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Energy Spectrum of a Four-Terminal Josephson Junction: Toward Topological Andreev Band Structures\",\"authors\":\"Tommaso Antonelli, Marco Coraiola, David Christian Ohnmacht, Aleksandr E. Svetogorov, Deividas Sabonis, Sofieke C. ten Kate, Erik Cheah, Filip Krizek, Rüdiger Schott, Juan Carlos Cuevas, Wolfgang Belzig, Werner Wegscheider, Fabrizio Nichele\",\"doi\":\"10.1103/qd3y-f912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid multiterminal Josephson junctions (JJs) are expected to harbor a novel class of Andreev bound states (ABSs), including topologically nontrivial states in four-terminal devices. In these systems, topological phases emerge when ABSs depend on at least three superconducting phase differences, resulting in a three-dimensional (3D) energy spectrum characterized by Weyl nodes at zero energy. Here, we realize a four-terminal JJ in a hybrid Al</a:mi>/</a:mo>InAs</a:mi></a:mrow></a:math> heterostructure, where ABSs form a synthetic 3D band structure. We probe the energy spectrum using tunneling spectroscopy and identify spectral features associated with the formation of a tri-Andreev molecule, a bound state whose energy depends on three superconducting phases and, therefore, is able to host topological ABSs. The experimental observations are well described by a numerical model. The calculations predict the appearance of four Weyl nodes at zero energy within a gap smaller than the experimental resolution. These topological states are theoretically predicted to remain stable within an extended region of the parameter space, well accessible by our device. These findings establish an experimental foundation to study high-dimensional synthetic band structures in multiterminal JJs and to realize topological Andreev bands.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/qd3y-f912\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/qd3y-f912","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring the Energy Spectrum of a Four-Terminal Josephson Junction: Toward Topological Andreev Band Structures
Hybrid multiterminal Josephson junctions (JJs) are expected to harbor a novel class of Andreev bound states (ABSs), including topologically nontrivial states in four-terminal devices. In these systems, topological phases emerge when ABSs depend on at least three superconducting phase differences, resulting in a three-dimensional (3D) energy spectrum characterized by Weyl nodes at zero energy. Here, we realize a four-terminal JJ in a hybrid Al/InAs heterostructure, where ABSs form a synthetic 3D band structure. We probe the energy spectrum using tunneling spectroscopy and identify spectral features associated with the formation of a tri-Andreev molecule, a bound state whose energy depends on three superconducting phases and, therefore, is able to host topological ABSs. The experimental observations are well described by a numerical model. The calculations predict the appearance of four Weyl nodes at zero energy within a gap smaller than the experimental resolution. These topological states are theoretically predicted to remain stable within an extended region of the parameter space, well accessible by our device. These findings establish an experimental foundation to study high-dimensional synthetic band structures in multiterminal JJs and to realize topological Andreev bands.
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.