Physiology and Molecular Biology of Plants最新文献

筛选
英文 中文
Physiological response and tolerance of Sesuvium portulacastrum L. to low temperature stress Sesuvium portulacastrum L. 对低温胁迫的生理反应和耐受性
IF 3.5 3区 生物学
Physiology and Molecular Biology of Plants Pub Date : 2024-03-09 DOI: 10.1007/s12298-024-01429-6
Jingtao Ye, Jingyi Yang, Rou Zheng, Jiawen Yu, Xiamin Jiang, Sheng Li, Maowang Jiang
{"title":"Physiological response and tolerance of Sesuvium portulacastrum L. to low temperature stress","authors":"Jingtao Ye, Jingyi Yang, Rou Zheng, Jiawen Yu, Xiamin Jiang, Sheng Li, Maowang Jiang","doi":"10.1007/s12298-024-01429-6","DOIUrl":"https://doi.org/10.1007/s12298-024-01429-6","url":null,"abstract":"<p>The plant <i>Sesuvium portulacastrum</i> L., commonly referred to as sea purslane, is a perennial halophytic species with significant potential for development in marine ecological restoration. However, its growth is limited in high-latitude regions with lower temperatures due to its subtropical nature. Furthermore, literature on its cold tolerance is scarce. This study, therefore, focused on sea purslane plants naturally overwintering in Ningbo (29°77’N), investigating their morphological, histological, rooting, and physiological responses to low temperatures (7 °C, 11 °C, 15 °C, and 19 °C). The findings indicated an escalation in cold damage severity with decreasing temperatures. At 7 °C, the plants failed to root and subsequently perished. In contrast, at 11 °C, root systems developed, while at 15 °C and 19 °C, the plants exhibited robust growth, outperforming the 11 °C group in terms of leaf number and root length significantly (<i>P</i> &lt; 0.05). Histological analyses showed a marked reduction in leaf thickness under cold stress (<i>P</i> &lt; 0.05), with disorganized leaf structure observed in the 7 °C group, whereas it remained stable at higher temperatures. No root primordia were evident in the vascular cambium of the 7 and 11 °C groups, in contrast to the 15 and 19 °C groups. Total chlorophyll content decreased with temperature, following the order: 19 °C &gt; 15 °C &gt; 11 °C &gt; 7 °C. Notably, ascorbic acid levels were significantly higher in the 7 and 11 °C groups than in the 15 and 19 °C groups. Additionally, the proline concentration in the 7 °C group was approximately fourfold higher than in the 19 °C group. Activities of antioxidant enzymes—superoxide dismutase, peroxidase, and catalase—were significantly elevated in the 7 and 11 °C groups compared to the 15 and 19 °C groups. Moreover, the malondialdehyde content in the 7 °C group (36.63 ± 1.75 nmol/g) was significantly higher, about 5.5 and 9.6 times, compared to the 15 °C and 19 °C groups, respectively. In summary, 7 °C is a critical threshold for sea purslane stem segments; below this temperature, cellular homeostasis is disrupted, leading to an excessive accumulation of lipid peroxides and subsequent death due to an inability to neutralize excess reactive oxygen species. At 11 °C, although photosynthesis is impaired, self-protective mechanisms such as enhanced antioxidative systems and osmoregulation are activated. However, root development is compromised, resulting in stunted growth. These results contribute to expanding the geographic distribution of sea purslane and provide a theoretical basis for its ecological restoration in high-latitude mariculture.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of codon usage patterns in the chloroplast genomes of nine forage legumes 九种饲用豆科植物叶绿体基因组中密码子使用模式的比较分析
IF 3.5 3区 生物学
Physiology and Molecular Biology of Plants Pub Date : 2024-03-09 DOI: 10.1007/s12298-024-01421-0
Mingkun Xiao, Xiang Hu, Yaqi Li, Qian Liu, Shaobin Shen, Tailing Jiang, Linhui Zhang, Yingchun Zhou, Yuexian Li, Xin Luo, Lina Bai, Wei Yan
{"title":"Comparative analysis of codon usage patterns in the chloroplast genomes of nine forage legumes","authors":"Mingkun Xiao, Xiang Hu, Yaqi Li, Qian Liu, Shaobin Shen, Tailing Jiang, Linhui Zhang, Yingchun Zhou, Yuexian Li, Xin Luo, Lina Bai, Wei Yan","doi":"10.1007/s12298-024-01421-0","DOIUrl":"https://doi.org/10.1007/s12298-024-01421-0","url":null,"abstract":"<p><i>Leguminosae</i> is one of the three largest families of angiosperms after <i>Compositae</i> and <i>Orchidaceae</i>. It is widely distributed and grows in a variety of environments, including plains, mountains, deserts, forests, grasslands, and even waters where almost all legumes can be found. It is one of the most important sources of starch, protein and oil in the food of mankind and also an important source of high-quality forage material for animals, which has important economic significance. In our study, the codon usage patterns and variation sources of the chloroplast genome of nine important forage legumes were systematically analyzed. Meanwhile, we also constructed a phylogenetic tree based on the whole chloroplast genomes and protein coding sequences of these nine forage legumes. Our results showed that the chloroplast genomes of nine forage legumes end with A/T bases, and seven identical high-frequency (HF) codons were detected among the nine forage legumes. ENC-GC3s mapping, PR2 analysis, and neutral analysis showed that the codon bias of nine forage legumes was influenced by many factors, among which natural selection was the main influencing factor. The codon usage frequency showed that the <i>Nicotiana tabacum</i> and <i>Saccharomyces cerevisiae</i> can be considered as receptors for the exogenous expression of chloroplast genes of these nine forage legumes. The phylogenetic relationships of the chloroplast genomes and protein coding genes were highly similar, and the nine forage legumes were divided into three major clades. Among the clades <i>Melilotus officinalis</i> was more closely related to <i>Medicago sativa</i>, and <i>Galega officinalis</i> was more closely related to <i>Galega orientalis</i>. This study provides a scientific basis for the molecular markers research, species identification and phylogenetic studies of forage legumes.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide identification of bHLH transcription factors and expression analysis under drought stress in Pseudoroegneria libanotica at germination bHLH 转录因子的全基因组鉴定及干旱胁迫下假鹅掌楸萌芽期的表达分析
IF 3.5 3区 生物学
Physiology and Molecular Biology of Plants Pub Date : 2024-03-09 DOI: 10.1007/s12298-024-01433-w
Xingguan Zhai, Xia Wang, Xunzhe Yang, Qingxiang Huang, Dandan Wu, Yi Wang, Houyang Kang, Lina Sha, Xing Fan, Yonghong Zhou, Haiqin Zhang
{"title":"Genome-wide identification of bHLH transcription factors and expression analysis under drought stress in Pseudoroegneria libanotica at germination","authors":"Xingguan Zhai, Xia Wang, Xunzhe Yang, Qingxiang Huang, Dandan Wu, Yi Wang, Houyang Kang, Lina Sha, Xing Fan, Yonghong Zhou, Haiqin Zhang","doi":"10.1007/s12298-024-01433-w","DOIUrl":"https://doi.org/10.1007/s12298-024-01433-w","url":null,"abstract":"<p>The basic helix-loop-helix (bHLH) transcription factor family is the second largest in plants. bHLH transcription factor is not only universally involved in plant growth and metabolism, including photomorphogenesis, light signal transduction, and secondary metabolism, but also plays an important role in plant response to stress. However, the function of bHLH TFs in <i>Pseudoroegneria</i> species has not been studied yet. <i>Pseudoroegneria</i> (Nevski) Á. Löve is a perennial genus of the <i>Triticeae</i>. <i>Pseudoroegneria</i> species are mostly distributed in arid/semi-arid areas and they show good drought tolerance. In this study, we identified 152 PlbHLH TFs in <i>Pseudoroegneria libanotica</i>, which could be classified into 15 groups. Collinearity analysis indicates that 122 <i>PlbHLH</i> genes share homology with <i>wbHLH</i> genes in wheat, and it has lower homology with <i>AtbHLH</i> genes in <i>Arabidopsis</i>. Based on transcriptome profiling under an experiment with three PEG concentrations (0%, 10%, and 20%), 10 up-regulated genes and 11 down-regulated <i>PlbHLH</i> genes were screened. Among them, <i>PlbHLH6</i>, <i>PlbHLH55</i> and <i>PlbHLH64</i> as candidate genes may be the key genes related to drought tolerance response at germination, and they have been demonstrated to respond to drought, salt, oxidative, heat, and heavy metal stress in yeast. This study lays the foundation for an in-depth study of the biological roles of <i>PlbHLHs</i> in <i>Pse. libanotica</i>, and discovered new drought-tolerance candidate genes to enhance the genetic background of <i>Triticeae</i> crops.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The combined application of rutin and silicon alleviates osmotic stress in maize seedlings by triggering accumulation of osmolytes and antioxidants’ defense mechanisms 芦丁和硅的联合应用通过激发渗透溶质的积累和抗氧化剂的防御机制缓解玉米幼苗的渗透胁迫
IF 3.5 3区 生物学
Physiology and Molecular Biology of Plants Pub Date : 2024-03-09 DOI: 10.1007/s12298-024-01430-z
{"title":"The combined application of rutin and silicon alleviates osmotic stress in maize seedlings by triggering accumulation of osmolytes and antioxidants’ defense mechanisms","authors":"","doi":"10.1007/s12298-024-01430-z","DOIUrl":"https://doi.org/10.1007/s12298-024-01430-z","url":null,"abstract":"<h3>Abstract</h3> <p>Silicon (Si) has been shown to improve plant defenses against a variety of stresses. However, how rutin (Rut) affects stress factors is yet to be fully explored. Moreover, their combined role in osmotic stress response remains unclear. The current study was performed to determine how the use of Rut and Si, both separately and in combination, improved the physiological resilience of maize seedlings to two levels of osmotic stress (induced by polyethylene glycol (PEG) 6000). We aimed to enhance osmotic stress tolerance with the simultaneous use of Rut and Si. First, we selected the best water status and the lowest membrane damage enhancing concentration of Rut (60 ppm) and Si (1 mM) to research their tolerance and resistance to osmotic stress (moderate: 10% PEG, severe: 15% PEG). The application of Rut and Si separately and together reduced oxidative stress by decreasing the reactive oxygen species and improved the relative water content, osmoprotectants (proline, total soluble sugar, and glycine-betaine), ascorbate level, and some antioxidant defense-related enzyme activities and their gene expression in maize seedlings under osmotic stress. However, these effects were more promising under moderate stress. As a result, findings from the study indicate the synergistic effect of combined Rut and Si on osmotic stress tolerance in maize seedlings. Overall, the combination of Rut and Si was more effective than independent Rut and Si in reducing osmotic stress in maize seedlings. Here, it was clear that Rut played an active role in alleviating stress. This combined application can be useful for developing drought tolerance in crops for the agriculture sector.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agronomic potential of plant-specific Gγ proteins 植物特异性 Gγ 蛋白的农艺潜力
IF 3.5 3区 生物学
Physiology and Molecular Biology of Plants Pub Date : 2024-03-09 DOI: 10.1007/s12298-024-01428-7
Sona Pandey
{"title":"Agronomic potential of plant-specific Gγ proteins","authors":"Sona Pandey","doi":"10.1007/s12298-024-01428-7","DOIUrl":"https://doi.org/10.1007/s12298-024-01428-7","url":null,"abstract":"<p>The vascular plant-specific type III Gγ proteins have emerged as important targets for biotechnological applications. These proteins are exemplified by Arabidopsis AGG3, rice Grain Size 3 (GS3), Dense and Erect Panicle 1 (DEP1), and GGC2 and regulate plant stature, seed size, weight and quality, nitrogen use efficiency, and multiple stress responses. These Gγ proteins are an integral component of the plant heterotrimeric G-protein complex and differ from the canonical Gγ proteins due to the presence of a long, cysteine-rich C-terminal region. Most cereal genomes encode three or more of these proteins, which have similar N-terminal Gγ domains but varying lengths of the C-terminal domain. The C-terminal domain is hypothesized to give specificity to the protein function. Intriguingly, many accessions of cultivated cereals have natural deletion of this region in one or more proteins, but the mechanistic details of protein function remain perplexing. Distinct, sometimes contrasting, effects of deletion of the C-terminal region have been reported in different crops or under varying environmental conditions. This review summarizes the known roles of type III Gγ proteins, the possible action mechanisms, and a perspective on what is needed to comprehend their full agronomic potential.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional regulation of tomato fruit ripening 番茄果实成熟的转录调控
IF 3.5 3区 生物学
Physiology and Molecular Biology of Plants Pub Date : 2024-03-09 DOI: 10.1007/s12298-024-01424-x
Priya Gambhir, Utkarsh Raghuvanshi, Rahul Kumar, Arun Kumar Sharma
{"title":"Transcriptional regulation of tomato fruit ripening","authors":"Priya Gambhir, Utkarsh Raghuvanshi, Rahul Kumar, Arun Kumar Sharma","doi":"10.1007/s12298-024-01424-x","DOIUrl":"https://doi.org/10.1007/s12298-024-01424-x","url":null,"abstract":"<p>An intrinsic and genetically determined ripening program of tomato fruits often depends upon the appropriate activation of tissue- and stage-specific transcription factors in space and time. The past two decades have yielded considerable progress in detailing these complex transcriptional as well as hormonal regulatory circuits paramount to fleshy fruit ripening. This non-linear ripening process is strongly controlled by the MADS-box and NOR family of proteins, triggering a transcriptional response associated with the progression of fruit ripening. Deepening insights into the connection between MADS-RIN and plant hormones related transcription factors, such as ERFs and ARFs, further conjugates the idea that several signaling units work in parallel to define an output fruit ripening transcriptome. Besides these TFs, the role of other families of transcription factors such as MYB, GLK, WRKY, GRAS and bHLH have also emerged as important ripening regulators. Other regulators such as EIN and EIL proteins also determine the transcriptional landscape of ripening fruits. Despite the abundant knowledge of the complex spectrum of ripening networks in the scientific domain, identifying more ripening effectors would pave the way for a better understanding of fleshy fruit ripening at the molecular level. This review provides an update on the transcriptional regulators of tomato fruit ripening.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ALLENE OXIDE SYNTHASE (AOS) induces petal senescence through a novel JA-associated regulatory pathway in Arabidopsis 拟南芥中的氧化 ALLENE OXIDE SYNTHASE (AOS) 通过新型 JA 相关调控途径诱导花瓣衰老
IF 3.5 3区 生物学
Physiology and Molecular Biology of Plants Pub Date : 2024-03-08 DOI: 10.1007/s12298-024-01425-w
Liuqing Wu, Kaiqi Wang, Mengyi Chen, Wenxin Su, Zheng Liu, Xiaoying Guo, Mengqian Ma, Shuangjie Qian, Yuqi Deng, Haihan Wang, Chanjuan Mao, Zaibao Zhang, Xiaofeng Xu
{"title":"ALLENE OXIDE SYNTHASE (AOS) induces petal senescence through a novel JA-associated regulatory pathway in Arabidopsis","authors":"Liuqing Wu, Kaiqi Wang, Mengyi Chen, Wenxin Su, Zheng Liu, Xiaoying Guo, Mengqian Ma, Shuangjie Qian, Yuqi Deng, Haihan Wang, Chanjuan Mao, Zaibao Zhang, Xiaofeng Xu","doi":"10.1007/s12298-024-01425-w","DOIUrl":"https://doi.org/10.1007/s12298-024-01425-w","url":null,"abstract":"<p>Flowers are crucial for the reproduction of flowering plants and their senescence has drastic effects on plant-animal interactions as well as pollination. Petal senescence is the final phase of flower development which is regulated by hormones and genes. Among these, jasmonic acid (JA) has emerged as a major contributor to petal senescence, but its molecular mechanisms remain elusive. Here, the role of JA in petal senescence in <i>Arabidopsis</i> was investigated. We showed that petal senescence in <i>aos</i> mutant was significantly delayed, which also affected petal cell size and proliferation. Similar significant delays in petal senescence were observed in <i>dad1</i> and <i>coi1</i> mutants. However, <i>MYB21/24</i> and <i>MYC2/3/4</i>, known downstream regulators of JA in flower development, played no role in petal senescence. This indicated that JA regulates petal senescence by modulating other unknown transcription factors. Transcriptomic analysis revealed that <i>AOS</i> altered the expression of 3681 genes associated, and identified groups of differentially expressed transcription factors, highlighting the potential involvement of AP-2, WRKY and NAC. Furthermore, <i>bHLH13</i>, <i>bHLH17</i> and <i>URH2</i> were identified as potential new regulators of JA-mediated petal senescence. In conclusion, our findings suggest a novel genetic pathway through which JA regulates petal senescence in <i>Arabidopsis</i>. This pathway operates independently of stamen development and leaf senescence, suggesting the evolution of specialized mechanisms for petal senescence.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting plant stress memory: mechanisms and contribution to stress adaptation 重新审视植物胁迫记忆:机制及其对胁迫适应的贡献
IF 3.5 3区 生物学
Physiology and Molecular Biology of Plants Pub Date : 2024-03-08 DOI: 10.1007/s12298-024-01422-z
Abu Bakar Siddique, Sumaya Parveen, Md. Zahidur Rahman, Jamilur Rahman
{"title":"Revisiting plant stress memory: mechanisms and contribution to stress adaptation","authors":"Abu Bakar Siddique, Sumaya Parveen, Md. Zahidur Rahman, Jamilur Rahman","doi":"10.1007/s12298-024-01422-z","DOIUrl":"https://doi.org/10.1007/s12298-024-01422-z","url":null,"abstract":"<p>Highly repetitive adverse environmental conditions are encountered by plants multiple times during their lifecycle. These repetitive encounters with stresses provide plants an opportunity to remember and recall the experiences of past stress-associated responses, resulting in better adaptation towards those stresses. In general, this phenomenon is known as plant stress memory. According to our current understanding, epigenetic mechanisms play a major role in plants stress memory through DNA methylation, histone, and chromatin remodeling, and modulating non-coding RNAs. In addition, transcriptional, hormonal, and metabolic-based regulations of stress memory establishment also exist for various biotic and abiotic stresses. Plant memory can also be generated by priming the plants using various stressors that improve plants’ tolerance towards unfavorable conditions. Additionally, the application of priming agents has been demonstrated to successfully establish stress memory. However, the interconnection of all aspects of the underlying mechanisms of plant stress memory is not yet fully understood, which limits their proper utilization to improve the stress adaptations in plants. This review summarizes the recent understanding of plant stress memory and its potential applications in improving plant tolerance towards biotic and abiotic stresses.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breeding rice for yield improvement through CRISPR/Cas9 genome editing method: current technologies and examples 通过 CRISPR/Cas9 基因组编辑方法培育水稻以提高产量:现有技术与实例
IF 3.5 3区 生物学
Physiology and Molecular Biology of Plants Pub Date : 2024-03-08 DOI: 10.1007/s12298-024-01423-y
Balakrishnan Rengasamy, Mrinalini Manna, Nargis Begum Thajuddin, Muthukrishnan Sathiyabama, Alok Krishna Sinha
{"title":"Breeding rice for yield improvement through CRISPR/Cas9 genome editing method: current technologies and examples","authors":"Balakrishnan Rengasamy, Mrinalini Manna, Nargis Begum Thajuddin, Muthukrishnan Sathiyabama, Alok Krishna Sinha","doi":"10.1007/s12298-024-01423-y","DOIUrl":"https://doi.org/10.1007/s12298-024-01423-y","url":null,"abstract":"<p>The impending climate change is threatening the rice productivity of the Asian subcontinent as instances of crop failures due to adverse abiotic and biotic stress factors are becoming common occurrences. CRISPR-Cas9 mediated genome editing offers a potential solution for improving rice yield as well as its stress adaptation. This technology allows modification of plant’s genetic elements and is not dependent on foreign DNA/gene insertion for incorporating a particular trait. In this review, we have discussed various CRISPR-Cas9 mediated genome editing tools for gene knockout, gene knock-in, simultaneously disrupting multiple genes by multiplexing, base editing and prime editing the genes. The review here also presents how these genome editing technologies have been employed to improve rice productivity by directly targeting the yield related genes or by indirectly manipulating various abiotic and biotic stress responsive genes. Lately, many countries treat genome-edited crops as non-GMOs because of the absence of foreign DNA in the final product. Thus, genome edited rice plants with improved yield attributes and stress resilience are expected to be accepted by the public and solve food crisis of a major portion of the globe.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the potential of Sargassum tenerrimum extract: metabolic profiling and pathway analysis of groundnut (Arachis hypogaea) in response to Sargassum extract and Sclerotium rolfsii 解密马尾藻提取物的潜力:花生(Arachis hypogaea)对马尾藻提取物和球孢子菌反应的代谢谱分析和通路分析
IF 3.5 3区 生物学
Physiology and Molecular Biology of Plants Pub Date : 2024-02-28 DOI: 10.1007/s12298-024-01418-9
{"title":"Deciphering the potential of Sargassum tenerrimum extract: metabolic profiling and pathway analysis of groundnut (Arachis hypogaea) in response to Sargassum extract and Sclerotium rolfsii","authors":"","doi":"10.1007/s12298-024-01418-9","DOIUrl":"https://doi.org/10.1007/s12298-024-01418-9","url":null,"abstract":"<h3>Key message</h3> <p>The differential metabolite profiling and pathway analysis of groundnut in response to <em>Sargassum</em> extract and <em>S. rolfsii</em> help in understanding the groundnut- <em>S. rolfsii</em> interactions and the potential role of the <em>Sargassum</em> extract towards these interactions.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139987908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信