Photochemistry and Photobiology最新文献

筛选
英文 中文
Excited state relaxation mechanisms and tautomerism effects in 2,6-Diamino-8-Azapurine. 2,6-二氨基-8-氮杂嘌呤的激发态弛豫机制和互变异构效应。
IF 2.6 4区 生物学
Photochemistry and Photobiology Pub Date : 2025-02-11 DOI: 10.1111/php.14045
Leonardo M F Oliveira, Danillo Valverde, Gustavo Juliani Costa, Antonio Carlos Borin
{"title":"Excited state relaxation mechanisms and tautomerism effects in 2,6-Diamino-8-Azapurine.","authors":"Leonardo M F Oliveira, Danillo Valverde, Gustavo Juliani Costa, Antonio Carlos Borin","doi":"10.1111/php.14045","DOIUrl":"https://doi.org/10.1111/php.14045","url":null,"abstract":"<p><p>The photochemistry of 9H-2,6-diamino-8-azapurine (9H-8AZADAP), a promising fluorescent probe, was investigated using the Multi-State Complete-Active-Space Second-Order Perturbation Theory (MS-CASPT2) quantum chemical method, along with the Average Solvent Electrostatic Configuration and Free Energy Gradient (ASEC-FEG) and Polarizable Continuum Model (PCM) to take into account water solvation effects. For both isolated and solvated species, the main photochemical event is initiated by the absorption of light from ground-state to the bright <sup>1</sup>(ππ* L<sub>a</sub>) state, which undergoes barrierless evolution to its minimum energy region (<sup>1</sup>(ππ* L<sub>a</sub>)<sub>min</sub>) without crossing any other potential energy surface (PES). Subsequently, the excess of energy is released through fluorescence. From the <sup>1</sup>(ππ* L<sub>a</sub>)<sub>min</sub> region, two radiationless decay pathways back to the initial ground state, mediated by two distinct conical intersections between the ground and <sup>1</sup>(ππ* L<sub>a</sub>) states, are found to be unlikely due to the presence of high energy barriers in both environments. Our results also indicate that the solvation effects are more pronounced when using the ASEC-FEG method, which predicts larger structural and energy changes, especially concerning energetic barriers. Based on the free energy perturbation theory (FEP), a hypothetical thermodynamic cycle was devised, from which we infer that in an aqueous environment the N<sub>3</sub> site is the most favorable for protonation. We also conclude that the 8H-8AZADAP tautomer is responsible for the fluorescent band observed experimentally at 410 nm and elucidates the mechanism of phototautomerism.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel microcapsule composite Spherulites Peony Superior Retinol mitigates UVB-induced skin damage in vitro and in vivo. 一种新型微胶囊复合材料 Spherulites Peony Superior Retinol 可在体外和体内减轻紫外线引起的皮肤损伤。
IF 2.6 4区 生物学
Photochemistry and Photobiology Pub Date : 2025-02-05 DOI: 10.1111/php.14078
Jiejun Han, Rongyue Gong, Yuankun Liu, Tiangui Gong, Bin Wang, Laidi Zhang, Jiayue Chen
{"title":"A novel microcapsule composite Spherulites Peony Superior Retinol mitigates UVB-induced skin damage in vitro and in vivo.","authors":"Jiejun Han, Rongyue Gong, Yuankun Liu, Tiangui Gong, Bin Wang, Laidi Zhang, Jiayue Chen","doi":"10.1111/php.14078","DOIUrl":"https://doi.org/10.1111/php.14078","url":null,"abstract":"<p><p>Skin serves as our outermost barrier, protecting our bodies from various environmental damages. Increasing research has revealed that UVB is a primary factor for extrinsic aging. This study explored the role of a novel microcapsule composite Spherulites Peony Superior Retinol (SPSR) on skin damage induced by UVB. SPSR exhibited a capacity to eliminate UVB-induced ROS. By measurement of cyclobutane pyrimidine dimers (CPD) and comet assay, the results implied that SPSR mitigates DNA damage from oxidative damage caused by UVB. In addition, UVB radiation typically leads to an increase in inflammatory factors within the skin. Decreased gene expressions of interleukin-1α and TNF-α have been observed in HaCaT cells. Moreover, a decreased gene expression of extracellular matrix (ECM)-related protein, including fibronectin (FN1), Col1A1, and Col3A1 caused by UVB was mitigated by SPSR. Furthermore, the clinical trials with 30 volunteers confirmed the significant relief and antiwrinkle effects of the cosmetic formulation containing 0.1% SPSR. These findings implied the promising potential of SPSR as a comprehensive solution for combating the detrimental effects of UVB exposure and maintaining skin health.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inoculation of methylotrophs mitigates heat and UV stress in mung bean (Vigna radiata L.) and enhances growth, antioxidant, and functional diversity. 接种甲基营养体可减轻绿豆(Vigna radiata L.)的高温和紫外线胁迫,促进其生长、抗氧化和功能多样性。
IF 2.6 4区 生物学
Photochemistry and Photobiology Pub Date : 2025-02-03 DOI: 10.1111/php.14075
Harshida A Gamit, Salim Manoharadas, Natarajan Amaresan
{"title":"Inoculation of methylotrophs mitigates heat and UV stress in mung bean (Vigna radiata L.) and enhances growth, antioxidant, and functional diversity.","authors":"Harshida A Gamit, Salim Manoharadas, Natarajan Amaresan","doi":"10.1111/php.14075","DOIUrl":"https://doi.org/10.1111/php.14075","url":null,"abstract":"<p><p>Climate change involves the induction of heat and solar ultraviolet (UV) radiation, which profoundly affects sustainable crop production. Increasing solar UV radiation negatively impacts the photosynthetic apparatus, plant-associated organisms, and plant health. The present study aimed to comprehensively assess methylotrophic bacteria to alleviate heat and UV radiation in Vigna radiata L. under pot studies and field conditions. Under normal and UVB stress conditions, inoculation of methylotrophs significantly enhanced seed germination (72.55%-96.70% (normal) and 51.67%-65.33% (stressed)) and improved plant growth parameters, total chlorophyll (25.80-48.16 mg/g (normal) and 9.13-27.88 mg/g (stressed)), and carotenoid (569.1-1067.1 μg/g (normal) and 287.8-903.4 μg/g (stressed)) contents. A similar enhancement in antioxidant properties such as superoxide dismutase (1-5 fold), peroxidase (1-9 fold), phenylalanine ammonia lyase (1-4 fold), and proline content (1-5 fold) was observed in response to UVB radiation and heat stress under pot studies. A community-level physiological profile (CLPP) study of leaf samples revealed enhanced AWCD in methylotrophs treated plants compared to the UVB-exposed controls. Furthermore, field studies in summer conditions confirmed that inoculation with methylotrophs had a positive effect on V. radiata growth and physiology. The methylotrophs inoculation increased pod formation (25.44-32.78 and 15.56-32.00) and yield (109.81-238.63 and 71.88-216.29 q/ha) under UV cut-off sheet covered and non-covered conditions, respectively. This study demonstrated the potential of methylotrophs to mitigate heat and solar (UV) radiation in plants and provide sustainable strategies for agriculture and the environment.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel acquired resistance mechanism to 5-aminolevulinic acid-mediated photodynamic therapy with ABCG2 inhibition. ABCG2抑制5-氨基乙酰丙酸介导的光动力治疗的新获得性耐药机制。
IF 2.6 4区 生物学
Photochemistry and Photobiology Pub Date : 2025-02-03 DOI: 10.1111/php.14077
Sharayu Chandratre, Jordyn Olsen, Bin Chen
{"title":"A novel acquired resistance mechanism to 5-aminolevulinic acid-mediated photodynamic therapy with ABCG2 inhibition.","authors":"Sharayu Chandratre, Jordyn Olsen, Bin Chen","doi":"10.1111/php.14077","DOIUrl":"https://doi.org/10.1111/php.14077","url":null,"abstract":"<p><p>We report the occurrence of acquired tumor cell resistance to 5-aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) in combination with ABCG2 inhibition. ALA-PDT in combination with either an ABCG2 tool inhibitor Ko143 or a repurposed clinically-relevant ABCG2 inhibitor lapatinib was highly effective in eradicating the H4 human glioma cells, resulting in minimal cell survival after treatment. However, after seven rounds of repeated treatments with light dose escalation, the resultant tumor cells became resistant to the combination therapy. The resistant sublines and the parental cell line showed similar ABCG2 activities and protein levels, indicating that it was not ABCG2 that caused the resistance. They also exhibited similar responses to PpIX-PDT and mTOR inhibitor AZD2014, suggesting that alterations in PDT sensitivity and mTOR pathway had little contribution to the development of resistance phenotype. By determining the intracellular and extracellular PpIX levels, the activities and protein levels of heme biosynthesis enzymes, we found that porphobilinogen deaminase (PBGD) activity and protein level were significantly reduced in the resistant sublines, causing resistance to PDT by substantially reducing PpIX biosynthesis. A novel acquired resistance mechanism to ALA-PDT with ABCG2 inhibition has been uncovered.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143122881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A skin explant model for studying UV-induced DNA damage and repair. 研究紫外线诱导DNA损伤及修复的皮肤外植体模型。
IF 2.6 4区 生物学
Photochemistry and Photobiology Pub Date : 2025-02-03 DOI: 10.1111/php.14070
Hailey Payne, Christina Athans, Shiyong Wu, Veronica Bahamondes Lorca
{"title":"A skin explant model for studying UV-induced DNA damage and repair.","authors":"Hailey Payne, Christina Athans, Shiyong Wu, Veronica Bahamondes Lorca","doi":"10.1111/php.14070","DOIUrl":"https://doi.org/10.1111/php.14070","url":null,"abstract":"<p><p>There is a growing need for a skin model that combines the natural physiology of skin while reducing reliance on mice. Natural physiology is achieved by using fresh, intact skin explants sourced from living organisms such as humans or mice. This study focused on the standardization and characterization of an in vitro mouse skin explant model for investigating solar ultraviolet (sUV)-induced skin damage. We developed a protocol to use skin explants derived from the discarded tissue of mice after euthanasia. These explants consist of intact dermal and epidermal layers suspended in cell culture medium and maintained in vitro. To assess the viability of the skin explants, we evaluated tissue morphology (via hematoxylin and eosin [H&E] staining), viability markers, and DNA damage markers. Our ex vivo model preserves the key characteristics and physiological responses of in vivo skin for short incubation periods, while minimizing the use of mice. This model enables the study of DNA damage and repair, and it has broad applications, including studies on skin photoprotection, topical treatments, drug development, and cosmetics.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactive oxygen species are involved in inhibition of photoreactivation of Staphylococcus aureus irradiated with 222-nm Far ultraviolet C. 活性氧参与了222nm远紫外C辐射对金黄色葡萄球菌光活化的抑制作用。
IF 2.6 4区 生物学
Photochemistry and Photobiology Pub Date : 2025-02-03 DOI: 10.1111/php.14065
Risako Fukushi, Kouji Narita, Kyosuke Yamane, Toru Koi, Krisana Asano, Akio Nakane
{"title":"Reactive oxygen species are involved in inhibition of photoreactivation of Staphylococcus aureus irradiated with 222-nm Far ultraviolet C.","authors":"Risako Fukushi, Kouji Narita, Kyosuke Yamane, Toru Koi, Krisana Asano, Akio Nakane","doi":"10.1111/php.14065","DOIUrl":"https://doi.org/10.1111/php.14065","url":null,"abstract":"<p><p>Ultraviolet-C (UV-C) at a wavelength of 254 nm is used for disinfection but cannot be used in dwelling space because it is harmful to the human body, while 222-nm Far UV-C shows germicidal effect and poses little hazardous effect to human. Formation of cyclobutane pyrimidine dimers (CPD) of DNA is a main mechanism of UV-C germicidal effect. CPD formed by irradiation with 254-nm UV-C is repaired and bacterial proliferation is recovered by photoreactivation. In this study, we investigated photoreactivation of Staphylococcus aureus irradiated with 222-nm Far UV-C. The proliferative effect of 222-nm Far UV-C irradiated S. aureus by photoreactivation was inferior to that of irradiated with 254-nm UV-C. The 254-nm UV-C wavelength and 222-nm Far UV-C induced CPD in S. aureus cells, and the same level of CPD was repaired in cells irradiated with either UV-C after photoreactivation. It has been reported that UV-C induces generation of reactive oxygen species (ROS) in bacteria and that ROS oxidize and inactivate a variety of biomolecules in bacteria. This study showed that more ROS-producing S. aureus were observed after irradiation with 222-nm Far UV-C compared with 254-nm UV-C. These results indicate that ROS may be involved in lower recovery of 222-nm Far UV-C irradiated S. aureus by photoreactivation.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transforming CO2 into formic acid by integrated solar-driven catalyst-enzyme coupled artificial photosynthetic system. 利用太阳能驱动的催化-酶耦合人工光合系统将CO2转化为甲酸。
IF 2.6 4区 生物学
Photochemistry and Photobiology Pub Date : 2025-01-31 DOI: 10.1111/php.14069
Ankita Singh, Rajesh K Yadav, Abhishek Kumar Gupta, Chandani Singh, Kanchan Sharma, Shaifali Mishra, Rehana Shahin, Atul P Singh, Krishna Kumar Yadav, Jin-Ook Baeg
{"title":"Transforming CO<sub>2</sub> into formic acid by integrated solar-driven catalyst-enzyme coupled artificial photosynthetic system.","authors":"Ankita Singh, Rajesh K Yadav, Abhishek Kumar Gupta, Chandani Singh, Kanchan Sharma, Shaifali Mishra, Rehana Shahin, Atul P Singh, Krishna Kumar Yadav, Jin-Ook Baeg","doi":"10.1111/php.14069","DOIUrl":"https://doi.org/10.1111/php.14069","url":null,"abstract":"<p><p>Photo-biocatalyst coupled systems offer a promising approach for converting solar energy into valuable fuels. The bio-integrated photocatalytic system sets a research benchmark by utilizing green energy for formic acid production, reducing CO₂ emissions, and enhancing selectivity through bio-enzyme incorporation. This bio-photocatalytic are promising solutions for environmental remediation and energy production. This research reports the synthesis and application of a novel metal-free, nitrogen-enriched graphene composite photocatalyst (N<sub>en</sub>GCTPP) for artificial photosynthesis. N<sub>en</sub>GCTPP was synthesized by covalently coupling tetraphenyl porphyrin tetracarboxylic acid (TPP) with N-doped graphene via a polycondensation pathway. The photogenerated charge separation then facilitates the regeneration of enzymatically active coenzymes (NADH) for formic acid production catalyzed by formate dehydrogenase. The photocatalyst exhibited remarkable performance in photocatalytic regeneration of the coenzyme NADH from NAD<sup>+</sup> with a high yield of 41.80%, as well as photocatalytic production of formic acid (HCO<sub>2</sub>H) as a solar fuel from CO<sub>2</sub> with a yield of 99.12 μM. This innovative artificial photosynthetic system demonstrates an affordable, highly efficient, and selective approach for converting carbon dioxide into valuable solar fuels and regenerating NADH, addressing environmental concerns and contributing to sustainable energy solutions.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the protective effect of Rosa damascena nanogel on collagenase and elastase activity and UVB-induced dermal damage: A rodent model approach to skin photoaging. 研究玫瑰纳米凝胶对胶原酶和弹性酶活性以及uvb诱导的皮肤损伤的保护作用:一种啮齿动物皮肤光老化模型方法。
IF 2.6 4区 生物学
Photochemistry and Photobiology Pub Date : 2025-01-30 DOI: 10.1111/php.14072
Negar Ranjbar, Mahmoud Osanloo, Mahdi Nasiri-Ghiri, Ali Zarenezhad, Roghayeh Heiran, Ali Ghanbariasad, Najmeh Namdar, Hiva Alipanah
{"title":"Investigating the protective effect of Rosa damascena nanogel on collagenase and elastase activity and UVB-induced dermal damage: A rodent model approach to skin photoaging.","authors":"Negar Ranjbar, Mahmoud Osanloo, Mahdi Nasiri-Ghiri, Ali Zarenezhad, Roghayeh Heiran, Ali Ghanbariasad, Najmeh Namdar, Hiva Alipanah","doi":"10.1111/php.14072","DOIUrl":"https://doi.org/10.1111/php.14072","url":null,"abstract":"<p><p>While aging inevitably changes our skin, this complex biological process involves much more than just getting older. As the body's largest organ, the skin constantly safeguards us from harmful environmental pathogens and plays a key role in overall well-being. This study investigated the development and evaluation of a nanogel containing Rosa damascena essential oil for its potential anti-aging properties. The nanogel was prepared from a primary nanoemulsion with a particle size of 86 ± 4 nm. Antioxidant activity, measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, was found to be 76% ± 3%. Furthermore, the nanogel demonstrated superior anti-collagenase and anti-elastase activities (60% ± 2% and 51% ± 0.1%, respectively) compared to the essential oil alone. The antibacterial efficacy of the nanogel was tested against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, revealing potent inhibitory effects. To simulate the aging process, rats were subjected to UVB irradiation on both legs 4 days a week before or after treatment. In vivo studies conducted on mice showed that the nanogel effectively reduced the formation of deep wrinkles in treated groups compared to pretreated ones. These findings suggest that the introduced nanogel, with its antioxidant and antimicrobial properties, holds promise as a natural therapeutic approach for wrinkle treatment.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The photochemical inheritance of Eduardo Lissi and Juan Grotewold and the intersystem crossings with other inheritances. Eduardo Lissi和Juan Grotewold的光化学遗传及其与其他遗传的系统间交叉。
IF 2.6 4区 生物学
Photochemistry and Photobiology Pub Date : 2025-01-29 DOI: 10.1111/php.14044
Silvia E Braslavsky, Carlos M Previtali
{"title":"The photochemical inheritance of Eduardo Lissi and Juan Grotewold and the intersystem crossings with other inheritances.","authors":"Silvia E Braslavsky, Carlos M Previtali","doi":"10.1111/php.14044","DOIUrl":"https://doi.org/10.1111/php.14044","url":null,"abstract":"<p><p>In 1963, Eduardo Lissi and Juan Grotewold started a chemical kinetics and photochemistry group at the School of Sciences at the University of Buenos Aires (Facultad de Ciencias Exactas y Naturales, FCEN, UBA). Political circumstances in Argentina and in Chile were a great determinant of the evolution, dispersion, and re-encounters of the group members. The initial graduate students in the group developed their own research groups working in various Countries and on a variety of projects. We relate the story of the strong interactions with each other of the original group as well as the cooperations and synergy (Intersystem Crossings) of Lissi and Grotewold and of their descendants with other research groups, mainly (but not only) in Latin America. A strong network of partnerships, friendships, and fruitful collaborations between the kineticists, photochemists, and photobiologists in Argentina, Chile and Brazil has evolved from the initial steps in the 1960s.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ozone as a method for decontamination of dissolving microneedles for clinical use. 臭氧作为临床用溶解性微针的去污方法。
IF 2.6 4区 生物学
Photochemistry and Photobiology Pub Date : 2025-01-29 DOI: 10.1111/php.14068
Michelle B Requena, Thaila Q Corrêa, Dianeth Sara L Bejar, Juliana C Barreiro, Kelly T de Paula, Vanderlei S Bagnato
{"title":"Ozone as a method for decontamination of dissolving microneedles for clinical use.","authors":"Michelle B Requena, Thaila Q Corrêa, Dianeth Sara L Bejar, Juliana C Barreiro, Kelly T de Paula, Vanderlei S Bagnato","doi":"10.1111/php.14068","DOIUrl":"https://doi.org/10.1111/php.14068","url":null,"abstract":"<p><p>Dissolving microneedles (DMNs) is a promising technology for transdermal and intradermal drug delivery. However, effective decontamination protocols are necessary to ensure safety and efficacy in clinical applications. The challenge is to use a technique that preserves mechanical properties, does not introduce chemicals, and can decontaminate DMNs without affecting the drug. With its potent antimicrobial properties and minimal residual effects, ozone presents a novel and safe method for decontaminating DMNs. Specifically, the present study assesses ozone's efficacy in decontaminating DMNs loaded with aminolevulic acid, intended for photodynamic therapy in skin cancer treatment. The results showed that it effectively decontaminates E. coli and S. aureus without compromising the polymer properties or promoting drug degradation. Overall, ozone represents an approach that can be adopted to decontaminate DMNs, offering a safer and effective strategy that enhances their potential to translate to clinical application.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信