{"title":"Using synthetic disk-integrated reflectance spectra to constrain direct imaging sensitivity requirements for a Mars-like exoplanet","authors":"C.A. Wolfe , T.D. Robinson","doi":"10.1016/j.pss.2024.105944","DOIUrl":"10.1016/j.pss.2024.105944","url":null,"abstract":"<div><p>The 2020 Decadal Survey on Astronomy and Astrophysics <span><span><sup>1</sup></span></span> recommended the prioritization of a space-based telescope capable of directly characterizing Earth-like exoplanets in reflected light. The planned suite of instruments onboard such a mission are expected to provide disk-integrated spectra with moderate spectral resolution and signal-to-noise (SNR). Although the detection and characterization of Earth-like exoplanets remains the primary focus of such a mission, land planets with limited available water, such as Mars, may be much more common. Mars-like exoplanets, therefore, are an equally significant set of targets when investigating the diverse climatologies and potential habitability of other worlds, especially if our own Solar System is any indication of planetary diversity. In this study, we constrain the direct imaging sensitivity requirements for observing and characterizing Mars-like exoplanets with the goal of informing future telescope design and mission planning. Employing an instrument noise model simulating a coronagraph-equipped, space-based telescope, spatially- and spectrally-resolved synthetic observations of Mars are produced. We evaluate the direct imaging sensitivity requirements across a range of wavelengths, from the ultraviolet (UV) to near-infrared (near-IR), to enable the spectral characterization of key atmospheric and surface features from disk-integrated reflectance spectra. Detectability at a given SNR is assessed through optical wavelength integration times for a range of phase angles, host star spectral types, and levels of atmospheric dustiness. Our results indicate that a Decadal-recommended space telescope featuring an aperture of 6-m is likely only proficient in detecting Mars-like exoplanets around K-type stars located within a 10 parsec (pc) radius from Earth. Furthermore, we demonstrate that when integrating over visible and near-IR wavelengths, required exposure times to detect such a planet are reasonable, especially near full phase angles. In the context of upcoming and proposed observatories, such as the Habitable Exoplanet Observatory (HabEx) and Large UV/Optical/IR Surveyor (LUVOIR), our findings provide valuable insights into the direct imaging capabilities and optimal observational strategies needed for detecting and studying Mars-like exoplanets.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"250 ","pages":"Article 105944"},"PeriodicalIF":1.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation and cartographic representation of Hyperion space images photogrammetric processing results","authors":"A.I. Sokolov , M.V. Nyrtsov , M.E. Fleis , I.E. Nadezhdina","doi":"10.1016/j.pss.2024.105945","DOIUrl":"10.1016/j.pss.2024.105945","url":null,"abstract":"<div><p>In this paper a new body-fixed coordinate system, based on the results of the processing of saturnian satellite Hyperion surface data, obtained by the Cassini spacecraft and proving the chaotic nature of this satellite rotation, was constructed. In this coordinate system, an approximating triaxial ellipsoid is defined, as well as global orthomosaic obtained from images of the Cassini spacecraft. A 3D model of Hyperion, obtained on the basis of a new shape model, is presented. This model is compared with 3D model and shape model developed by P. Thomas, J. Joseph, and T. Ansty, tied to the coordinate system in which the coordinates of Hyperion features are presented in the Gazetteer of Planetary Nomenclature. A surface map and a hypsometric map of Hyperion were compiled in an equal-area cylindrical projection of the triaxial ellipsoid with calculated parameters. To plot contour lines on the map, geodetic heights were calculated relative to the triaxial ellipsoid. A comparison was made of the compiled map with an earlier map in cylindrical and azimuthal meridian section projections. It is shown that meridian section projections give a good idea of the body surface, and the use of an equal-area projection makes it possible to calculate the areas of any contours on the surface. The distortion of one of the craters outline shape in the equal-area projection and the distortion of its area in the meridian section projections are shown.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"249 ","pages":"Article 105945"},"PeriodicalIF":1.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The astrobiological potential of the Makgadikgadi Basin, Botswana: Field analogue for planetary exploration","authors":"Trhas Hadush Kahsay , Asfawossen Asrat , Fulvio Franchi","doi":"10.1016/j.pss.2024.105943","DOIUrl":"10.1016/j.pss.2024.105943","url":null,"abstract":"<div><p>Terrestrial analogue sites have been crucial for studying Martian geology and mineralogy, integrating the direct evidence available from Mars through remote sensing and <em>in situ</em> measurements carried out by the instruments on board robotic missions. Studying readily available and accessible terrestrial analogues of Martian fossil or extant environments is considered the most efficient way to answer crucial scientific questions. These analogues offer opportunities to collect a range of geological and microbiological data. The Makgadikgadi Basin (MKB) in Botswana is one of such environments hosting a system of salt pans presenting striking similarities with Mars playa deposits. The MKB presents layered mounds, relict fan deltas with inverted channels, polygonal structures and evaporitic crusts harboring communities of extremophiles. The present-day MKB is predominantly fed by groundwater and local precipitations in an overall arid to semi-arid climate, characterized by high UV radiation and salinity, deposition of evaporitic minerals and authigenic clays. The shallow subsurface of the MKB pans is covered by diagenetic features (duricrusts) including silcretes and calcretes. These pans can serve as test beds for the physical and chemical characteristics of playa deposits on Mars and help improve our understanding of the conditions that might support life outside our planet.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"249 ","pages":"Article 105943"},"PeriodicalIF":1.8,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical processes during collisions of meteoroids with the Moon","authors":"A.A. Berezhnoy , G.V. Belov , C. Wöhler","doi":"10.1016/j.pss.2024.105942","DOIUrl":"10.1016/j.pss.2024.105942","url":null,"abstract":"<div><p>A realistic model of physico-chemical processes during collisions between meteoroids and the Moon considering condensation of refractory elements in the form of minerals and variable adiabatic index during expansion of impact-produced clouds was developed. Quenched chemical composition of impact-produced cloud is estimated. In accordance with this model relative fraction of atoms delivered to the lunar exosphere by impacts of meteoroids is significantly higher than that previously estimated with usage of the model with constant adiabatic index and without considering condensation as a factor affecting on pressure in impact-produced clouds.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"249 ","pages":"Article 105942"},"PeriodicalIF":1.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141853339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Ettehadi , Maksym Chuprin , Mehdi Mokhtari , Robert C. Anderson
{"title":"Laboratory testing of desiccation crack growth in terrestrial Martian analog environments using digital image correlation","authors":"Ali Ettehadi , Maksym Chuprin , Mehdi Mokhtari , Robert C. Anderson","doi":"10.1016/j.pss.2024.105933","DOIUrl":"https://doi.org/10.1016/j.pss.2024.105933","url":null,"abstract":"<div><p>The unique geologic features of raised ridges and polygonal cracks filled with multiple layers of cement observed in Gale and Jezero craters on Mars have origins that remain uncertain due to limited knowledge and measurement techniques. This study hypothesizes that these cracks result from the volumetric shrinkage of clay fabric due to dehydration and salinity fluctuations in ancient Martian lakes. The research aims to quantify the shrinkage of terrestrial simulants with varying mineral compositions analogous to those found at Gale Crater and Jezero Crater under diverse desiccation conditions. By simulating Martian regolith using the Rocknest soil simulant and examining historical aqueous conditions through sedimentary rock analogs, this study provides new insights into Martian geological structures. The extent and rate of shrinkage in simulant samples were quantified using ImageJ, while strain localization and propagation were measured using the Digital Image Correlation (DIC) technique until full desiccation crack patterns developed. Laboratory testing revealed that desiccation cracks tend to form polygonal patterns, which are patently similar to the polygonal patterns observed in some regions of Mars. However, not all simulants produced visible cracks, with some producing linear rather than polygonal patterns. Key findings indicate that higher temperatures result in wider and deeper cracks, while lower temperatures decrease crack density and length. Increased initial water content leads to more extensive cracking, with higher crack density and length per unit area. Sodium chloride and sodium sulfate significantly impact desiccation cracking, with low concentrations stabilizing the soil and high concentrations promoting extensive cracking. Smectite-rich samples exhibit extensive cracking, and tensile strain distribution during evaporation is non-uniform, influencing crack development based on sample properties and drying conditions. These insights enhance our understanding of polygonal crack formation on Mars, improving Mars sample return missions and informing the design of robust exploration equipment.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"248 ","pages":"Article 105933"},"PeriodicalIF":1.8,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spectrometer to explore isotopologues of lunar volatiles on Luna-27 lander","authors":"Viacheslav Meshcherinov , Iskander Gazizov , Viktor Kazakov , Maxim Spiridonov , Yuri Lebedev , Imant Vinogradov , Mikhail Gerasimov","doi":"10.1016/j.pss.2024.105935","DOIUrl":"https://doi.org/10.1016/j.pss.2024.105935","url":null,"abstract":"<div><p>The study of volatiles and the search for water are the primary objectives of the Luna-27 mission, which is planned to land on the south pole of the Moon in 2028. Here we present the tunable Diode Laser Spectrometer (DLS-L) that will be onboard the lander. The DLS-L will perform isotopic analysis of volatiles that are pyrolytically evolved from regolith. This article dives into the design of the spectrometer and the characterisation of isotopic signature retrieval. We look forward to expanding our knowledge of Lunar geochemistry by measuring D/H, <sup>18</sup>O/<sup>17</sup>O/<sup>16</sup>O, <sup>13</sup>C/<sup>12</sup>C ratios <em>in situ</em>, which would be the one-of-a-kind direct study of the lunar soil isotopy <em>without</em> sample contamination.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"248 ","pages":"Article 105935"},"PeriodicalIF":1.8,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R.E. Hamp, K. Olsson-Francis, S.P. Schwenzer, V.K. Pearson
{"title":"An inorganic silicate simulant to represent the interior of enceladus","authors":"R.E. Hamp, K. Olsson-Francis, S.P. Schwenzer, V.K. Pearson","doi":"10.1016/j.pss.2024.105934","DOIUrl":"https://doi.org/10.1016/j.pss.2024.105934","url":null,"abstract":"<div><p>Enceladus, an icy moon of Saturn, consists of an ice shell, global subsurface ocean and a silicate interior. By sampling plume material, the Cassini spacecraft found evidence of ongoing water-rock reactions between the silicate interior and the subsurface ocean. These data showed that these reactions provide a source of bioessential elements to the ocean, making Enceladus one of the leading astrobiological targets in our Solar System. Understanding these water-rock reactions is critical in understanding the potential habitability of Enceladus. To study these reactions experimentally, a chemical simulant to represent the contemporary silicate interior of Enceladus has been designed. Based on the available interpretations of Cassini data about the density, chemical composition, and aqueous alteration of the interior, the chosen starting point for the simulant is a CI chondrite. However, Enceladus is still undergoing active aqueous alteration, thus its silicate mineral assemblage cannot have reached the fully altered assemblage seen in a CI chondrite. To account for this, adaptations have been made to a CI chondrite mineral assemblage, extrapolating back to an assemblage of less aqueously altered minerals whilst maintaining the same chemical composition in terms of major oxide phases. Thus, the chemical and mineralogical composition of this simulant represents a best estimate of the silicate components in the ongoing water rock interactions on Enceladus today.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"248 ","pages":"Article 105934"},"PeriodicalIF":1.8,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0032063324000989/pdfft?md5=ec206c3a8d3bac236ce8245834ef160b&pid=1-s2.0-S0032063324000989-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the astrobiological potential of rock varnish from a mars analogue field site of Ladakh, India","authors":"Amritpal Singh Chaddha , Anupam Sharma , Narendra Kumar Singh , Sheikh Nawaz Ali , P.K. Das , S.K. Pandey , Binita Phartiyal , Subodh Kumar","doi":"10.1016/j.pss.2024.105932","DOIUrl":"https://doi.org/10.1016/j.pss.2024.105932","url":null,"abstract":"<div><p>Rock varnish, a dark-coloured natural feature rich in manganese (Mn), iron (Fe), and clay minerals that forms on rock surfaces and subsurface rock fractures in extremely dry and cold environments, is believed to provide nutritional support to microbiota. Because varnish supports an extensive microbial community, this rock coating is considered a substrate for potential microbial life to thrive in extreme environments on Earth. Although research in the past decades have advanced understanding of the varnish microbiome, little is known about this microbial community in settings that are high altitude (lower oxygen), dry, and cold. We present here new morphological, chemical, and rock magnetic results of rock varnish from this environmental setting, the Ladakh, a potential analogue site for life in extreme environments. Our results include the presence of putative magnetofossils-in the form of nanochains present in the rock varnish layer. Further, the higher concentrations of oxidised Mn<sup>4+</sup> and carboxylic acid functionality on the varnish surface revealed organic signatures. These collective results point towards the enriched concentration of magnetic minerals on the varnish layer that are possibly sourced through biotic forms. Consequently, the rock varnish can serve as an archive of ancient environmental records, as well as a potential geomaterial for astrobiological studies from the Martian analogue field location of Ladakh, which needs to be explored further for extensive biogeochemical studies.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"248 ","pages":"Article 105932"},"PeriodicalIF":1.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nico Haslebacher , Nicolas Thomas , Raphael Marschall
{"title":"Spectral ratioing of Afρ to constrain the dust particle size distribution of comets","authors":"Nico Haslebacher , Nicolas Thomas , Raphael Marschall","doi":"10.1016/j.pss.2024.105925","DOIUrl":"https://doi.org/10.1016/j.pss.2024.105925","url":null,"abstract":"<div><p>A numerical model of cometary dust environments is used to gain a deeper understanding of the relationship between the brightness (<span><math><mrow><mi>A</mi><mi>f</mi><mi>ρ</mi></mrow></math></span>) and the dust particle size distribution in the coma. Specifically, the spectral ratio of <span><math><mrow><mi>A</mi><mi>f</mi><mi>ρ</mi></mrow></math></span>(425 nm)<span><math><mo>/</mo></math></span> <span><math><mrow><mi>A</mi><mi>f</mi><mi>ρ</mi></mrow></math></span>(900 nm) is modelled for a wide range of parameters and tied to the power-law index. The studied parameters are dust composition, terminal outflow velocity and the dust production rate day–night asymmetry. We find that the spectral ratio of <span><math><mrow><mi>A</mi><mi>f</mi><mi>ρ</mi></mrow></math></span> modelled at 425 nm and 900 nm correlates with the power-law index of the particle size distribution. This method could be used to place constraints on the dust size distributions of comets and as a result improve the use of <span><math><mrow><mi>A</mi><mi>f</mi><mi>ρ</mi></mrow></math></span> as a proxy for cometary activity. Optically red dust indicates that the scattering is dominated by large particles.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"248 ","pages":"Article 105925"},"PeriodicalIF":2.4,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0032063324000898/pdfft?md5=df2b3c75344d9943e184d7167cceca05&pid=1-s2.0-S0032063324000898-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141329258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeremy Brossier, Francesca Altieri, Maria Cristina De Sanctis, Alessandro Frigeri, Marco Ferrari, Simone De Angelis, Enrico Bruschini, The Ma_MISS team
{"title":"Clay mineralogy in west Chryse Planitia, Mars: Comparison with present and future landing sites","authors":"Jeremy Brossier, Francesca Altieri, Maria Cristina De Sanctis, Alessandro Frigeri, Marco Ferrari, Simone De Angelis, Enrico Bruschini, The Ma_MISS team","doi":"10.1016/j.pss.2024.105924","DOIUrl":"https://doi.org/10.1016/j.pss.2024.105924","url":null,"abstract":"<div><p>On Mars, the well-known crustal dichotomy marks the boundary between the old southern highlands and the younger northern lowlands. Among these lowlands, Chryse Planitia resembles a quasi-circular basin surrounded by several highlands, and blends into Acidalia Planitia, another flat lowland located farther north. The transition area between these highlands and the Chryse basin is often designated as “<em>circum-Chryse Planitia</em>”, and is the terminus for many outflow channels. Infrared datasets display several sites therein with extensive clay-bearing outcrops, further testifying for aqueous activity on early Mars – notably around Mawrth Vallis, Oxia Planum and Xanthe Terra. In this study, we investigate clay-bearing outcrops identified along the western margins of circum-Chryse basin, often overlooked in the Martian literature. We also compare them with outcrops found in other regions along the crustal dichotomy and relevant in the Martian literature, such as Oxia Planum, Mawrth Vallis and Nili Fossae. Investigating such deposits is crucial for astrobiological perspectives, as they are appealing targets to search for organic compounds possibly stored throughout the rocks and soils. Fe,Mg-rich clays generally result from the interaction of liquid water with rocks under low temperatures, moderate pH levels and neutral to reducing conditions, factors favorable for life. Here, the clay minerals detected in west Chryse Planitia are consistent with either ferrosaponites or vermiculites associated with hydrobiotite, as recently inferred in Oxia Planum and north Xanthe Terra. Diverse alteration pathways might be involved based on either of these clay species. The clay-bearing rocks crop out in isolated hills in Lunae Planum, and along inverted channels and small craters in Tempe Terra. Further geologic investigations in circum-Chryse Planitia should certainly provide new clues on their origin and weathering conditions, while supporting the upcoming ExoMars rover mission and other future explorations.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"247 ","pages":"Article 105924"},"PeriodicalIF":2.4,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141289866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}