{"title":"Possible influence of Martian surface mineralogy on the detectability of atmospheric trace gases - mid-infrared simulation results","authors":"","doi":"10.1016/j.pss.2024.105877","DOIUrl":"10.1016/j.pss.2024.105877","url":null,"abstract":"<div><p>The paper focuses on the influence of the optical properties of Martian surface minerals on remotely detected gaseous components of the Martian atmosphere, when the spectrometer receives a combined signal from the Martian soil and atmosphere. Our considerations are primarily concerned with the detectability of methane, but the problem may also apply to other trace gases. Detections of methane in the Martian atmosphere have been reported from Mars Express (orbiting Mars), the Curiosity rover on the Martian surface, and from Earth. Its presence in the Martian atmosphere is being questioned today. The reason for these doubts is that both spectrometers onboard ExoMars Trace Gas Orbiter have not yet detected any methane in the Martian atmosphere using the very sensitive solar occultation method. The solar occultation method is unable to probe the lowest layers of the atmosphere at mid-latitudes, and so, its presence in this part of the atmosphere is assumed to be due to its possible source in the ground, as suggested by some works.</p><p>This paper considers whether the spectral characteristics of the soil may hinder the remote detection of methane. One of the examples discussed in the article relates to the possible observation of methane over mineralogical surfaces that may be the source of this gas. The examples of other surface mineralogical compositions are also discussed. The series of numerical simulations carried out in the region of the strong methane absorption band and the examples where the optical properties of the surface change the shape and contrast of this absorption band are shown. The codes used provide estimates of the spectral reflectance/emittance and total radiance of the Martian surface and atmosphere in the mid-infrared spectral region. The surface covered by dust was described by the reflectance and emittance calculated from n,k using Mie and Hapke theories or known from laboratory measurements. The different concentrations of atmospheric trace gases were taken into account.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"249 ","pages":"Article 105877"},"PeriodicalIF":1.8,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B.P. Blakley , Will M. Grundy , Jordan K. Steckloff , Sugata P. Tan , Jennifer Hanley , Anna E. Engle , Stephen C. Tegler , Gerrick E. Lindberg , Shae M. Raposa , Kendall J. Koga , Cecilia L. Thieberger
{"title":"The equilibrium vapor pressures of ammonia and oxygen ices at outer solar system temperatures","authors":"B.P. Blakley , Will M. Grundy , Jordan K. Steckloff , Sugata P. Tan , Jennifer Hanley , Anna E. Engle , Stephen C. Tegler , Gerrick E. Lindberg , Shae M. Raposa , Kendall J. Koga , Cecilia L. Thieberger","doi":"10.1016/j.pss.2024.105863","DOIUrl":"https://doi.org/10.1016/j.pss.2024.105863","url":null,"abstract":"<div><p>Few laboratory studies have investigated the vapor pressures of the volatiles that may be present as ices in the outer solar system; even fewer studies have investigated these species at the temperatures and pressures suitable to the surfaces of icy bodies in the Saturnian and Uranian systems (<100 K, <10<sup>−9</sup> bar). This study adds to the work of Grundy et al. (2024) in extending the known equilibrium vapor pressures of outer solar system ices through laboratory investigations at very low temperatures. Our experiments with ammonia and oxygen ices provide new thermodynamic models for these species’ respective enthalpies of sublimation. We find that ammonia ice, and to a lesser degree oxygen ice, are stable at higher temperatures than extrapolations in previous literature have predicted. Our results show that these ices should be retained over longer periods of time than previous extrapolations would predict, and a greater amount of these solids is required to support observation in exospheres of airless bodies in the outer solar system.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"244 ","pages":"Article 105863"},"PeriodicalIF":2.4,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140163255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Europa’s structural conditions for the existence of subsurface ocean and the absence of metallic core-driven magnetic field","authors":"Jun Kimura","doi":"10.1016/j.pss.2024.105868","DOIUrl":"10.1016/j.pss.2024.105868","url":null,"abstract":"<div><p>During the Galileo spacecraft’s flyby of Europa, magnetic field measurements detected an inductive signal due to the response of Europa’s interior conductors to temporal fluctuations in the Jovian magnetic field. In contrast, no signatures of intrinsic magnetic field originating from the dynamo motion in the metallic core were acquired. These measurements suggest that a global sub-surface ocean containing electrolytes exists beneath the solid ice shell and that the metallic core lacks convection. Europa’s interior is expected to be divided into the metallic core, rocky mantle and hydrosphere based on the moment of inertia factor estimated from gravity field measurements. Specifically, the thickness of the outermost water layer is 120<!--> <!-->–<!--> <!-->170 km, and the radius of the metallic core is 0.12<!--> <!-->–<!--> <!-->0.43 times the surface radius. No systematic investigation of Europa’s internal evolution has been conducted to estimate the current state of the subsurface ocean and to explain the absence of a core dynamo field within such uncertainty for internal structure and material properties (especially ice properties). Herein, I performed a numerical simulation of the long-term thermal evolution of Europa’s interior and investigated the temporal changes in the ocean thickness as well as the temperature and heat flow of the metallic core. If the ice reference viscosity is greater than 5 × 10<sup>14</sup> Pa<!--> <!-->s, the sub-surface ocean can persist even in the absence of tidal heating. In the case of a tidal heating of 10 mW/m<sup>2</sup> and 20 mW/m<sup>2</sup>, the ice shell thickness is <span><math><mo>≤</mo></math></span> <!--> <!-->90 km if the ice reference viscosity is <span><math><mo>≥</mo></math></span> <!--> <!-->1 × 10<sup>15</sup> and 1 × 10<sup>14</sup> Pa<!--> <!-->s, respectively. Regardless of the ice reference viscosity, if the tidal heating is <span><math><mo>≥</mo></math></span> <!--> <!-->50 mW/m<sup>2</sup>, the shell thickness will be <span><math><mo>≤</mo></math></span> <!--> <!-->40 km. The thermal history of the metallic core is determined by the hydrosphere thickness and the metallic core density, and is unaffected by variations in the ice shell (ocean) thickness. Preferred conditions for the absence of the core dynamo include CI chondritic abundance for the long-lived radioactive isotopes, lower initial core–mantle boundary (CMB) temperature and thicker hydrosphere. The core may be molten without convection if the composition is near the eutectic in a Fe–FeS alloy, or not molten (without convection) if the composition is near the Fe or FeS endmember. Specifically, if the rocky mantle has a CI chondritic radioisotope abundance, any core composition and hydrosphere thickness allow the absence of the core dynamo if the initial temperature at the CMB is lower than 1,250 K. If the rocky mantle has the ordinary chondritic radioisotope abundance, or a higher initial temperature (<span><math><mo>∼</m","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"243 ","pages":"Article 105868"},"PeriodicalIF":2.4,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Near-Earth asteroids of cometary origin associated with the Virginid complex","authors":"G.I. Kokhirova , A.I. Zhonmuhammadi , U.H. Khamroev , M.N. Latipov , T.J. Jopek","doi":"10.1016/j.pss.2024.105869","DOIUrl":"https://doi.org/10.1016/j.pss.2024.105869","url":null,"abstract":"<div><p>The Virginid meteoroid streams produce a series of meteor showers active annually during February–May. A certain parent comet is not found but a related association of some showers with near-Earth asteroids was previously established and a cometary origin of these asteroids was suggested. We performed a new search for NEAs belonging to the Virginid asteroid–meteoroid complex. On the base of calculation of orbital evolution of a sample of NEAs and determination of theoretical features of related showers a search for observable active showers close to theoretically predicted ones was carried out. As a result, the predicted showers of 27 NEAs were identified with the showers of the Virginid complex. Revealed association points to a cometary nature of NEAs that are moving within the stream and may be considered as extinct fragments of a larger comet-progenitor of the Virginid asteroid–meteoroid complex.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"243 ","pages":"Article 105869"},"PeriodicalIF":2.4,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140052662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seasonal variation in atmospheric optical depth (AOD) and thermal inertia (TI) inter-relationship over Martian Gale crater","authors":"Farzana Shaheen, Mili Ghosh Nee Lala, A.P. Krishna, Swagata Payra","doi":"10.1016/j.pss.2024.105865","DOIUrl":"10.1016/j.pss.2024.105865","url":null,"abstract":"<div><p>Investigating the relationship between thermal inertia (TI) and aerosol optical depth (AOD) is significant in giving insights into the seasonality of dust deposition and lifting phenomenon. The present study focuses on establishing a relationship of AOD with TI and different particle sizes over different Martian seasons. Two different Martian landforms (exposed rock and sand dunes) have been used to establish these relationships. TI layer was generated using THEMIS nighttime images for different seasons, whereas Curiosity Rover measured AOD values and Mars Climate database (MCD) visible column dust optical depth were used to derive rover equivalent AOD. An inverse relation was observed between AOD and TI for exposed rock and sand dune regions for all the seasons with low to moderate coefficient of determination (R<sup>2)</sup>. A similar inverse trend was observed between rover equivalent AOD and particle size with R<sup>2</sup> values ranging from 0.8 in the case of sand dunes (winter) to 0.93 in exposed rock (autumn). The results were further compared within the AOD obtained from orbiter image (HRSC) derived using Shadow method for spring season (Shaheen et al., 2022). The same inverse relation was found within TI having good R<sup>2</sup> values of 0.61 for exposed rock and 0.76 for the sand dunes. Error estimation using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Mean Square Error (NMSE), Fractional Bias (FB), Index of agreement errors was carried out for TI vs. AOD and particle size vs. AOD. Excellent statistical significance was obtained for AOD and particle size, in the case of sand dunes it was 0.96 for autumn and 0.99 in case of exposed rock for spring season, respectively.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"242 ","pages":"Article 105865"},"PeriodicalIF":2.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Rimbot , Olivier Witasse , Marco Pinto , Elise Wright Knutsen , Beatriz Sánchez-Cano , Simon Wood , Elena Tremolizzo , Willi Exner
{"title":"Galactic cosmic rays at 0.7 A.U. with Venus Express housekeeping data","authors":"Thomas Rimbot , Olivier Witasse , Marco Pinto , Elise Wright Knutsen , Beatriz Sánchez-Cano , Simon Wood , Elena Tremolizzo , Willi Exner","doi":"10.1016/j.pss.2024.105867","DOIUrl":"https://doi.org/10.1016/j.pss.2024.105867","url":null,"abstract":"<div><p>We apply a previously developed procedure to characterize galactic cosmic rays (GCRs) at 0.7 A.U. with engineering data coming from the Venus Express mission. The engineering parameters are the Error Detection and Correction EDAC cumulative counters, used for detection and correction of memory errors induced by highly energetic particles. It has already been demonstrated that the slope of this counter measures GCR fluxes using data from Mars Express (1.5 A.U.) and Rosetta (up to 4 A.U.) data. Here, we reproduce these methods using Venus Express EDAC data in order to understand the behavior of GCRs closer to the Sun. We again witness the anti-correlation of EDAC slope with the solar activity and further investigate this procedure. The resulting time-lag between maximum sunspot number and minimum GCRs intensity at Venus is close to one day instead of the expected several months. This work represents one of the first characterization of galactic cosmic rays at small distances to the Sun over a long period of time and further cements the value of using EDAC counters as scientific information.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"242 ","pages":"Article 105867"},"PeriodicalIF":2.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139992756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Maes , M. Gibilaro , P. Chamelot , C. Chiron , S. Chevrel , P. Pinet , L. Massot , J.J. Favier
{"title":"Lunar simulant behaviour in molten fluoride salt for ISRU applications","authors":"M. Maes , M. Gibilaro , P. Chamelot , C. Chiron , S. Chevrel , P. Pinet , L. Massot , J.J. Favier","doi":"10.1016/j.pss.2024.105854","DOIUrl":"https://doi.org/10.1016/j.pss.2024.105854","url":null,"abstract":"<div><p>This study investigated the behaviour of a lunar mare crystalline analog dissolved in molten LiF–NaF at 800 °C for the <em>in situ</em> production of metals as a part of In Situ Resource Utilization (ISRU) research. Molten fluorides have the capability to dissolve metallic oxides, and the Hall-Héroult process uses this kind of media to produce Al from Al<sub>2</sub>O<sub>3</sub>.The first step was to compare the individual solubility of the main oxides composing the mare lunar soil (SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, and MgO) with the solubility of the crystalline analog using Inductively Coupled Plasma – Atomic Emission Spectroscopy (ICP-AES). The species concentration added jointly are lower than the concentration of the same species added separately. Nonetheless, this study showed that LiF–NaF can be used to dissolve the analog with a maximum solubility of 3.9 wt% at 800 °C. Cyclic voltammograms were also used to verify the electroactivity of all oxide species in LiF–NaF, wherein all the main oxides are electroactive except SiO<sub>2</sub> and TiO<sub>2</sub>. Then electrolyses on different cathodic substrates were performed at different conditions and the obtained cathodic products were analysed with a scanning electron microscope (SEM) coupled with an energy dispersive spectroscopy (EDS). Despite the non-electroactivity of SiO<sub>2</sub> and TiO<sub>2</sub>, they were extracted in an alloyed form through Under Potential Deposition (UPD). Metallic deposition of other metals such as aluminium and titanium was achieved on carbon electrode. Finally, a synthetic mixture made of the different oxide species with the same chemical composition as the simulant, was investigated as a viable substitute for lunar mare soil. Its electrochemical behaviour was identical to the crystalline lunar simulant showing that our original process based on oxides dissolution is not influenced by the amorphous/crystalline state of the raw material.</p><p>the outputs of LiF–NaF molten process are not critically influenced by the physical state of the lunar regolith.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"242 ","pages":"Article 105854"},"PeriodicalIF":2.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0032063324000187/pdfft?md5=ef167a51d1a5b6f322e65e2913b65c38&pid=1-s2.0-S0032063324000187-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140024096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comprehensive semigray climate model","authors":"Barton Paul Levenson","doi":"10.1016/j.pss.2024.105866","DOIUrl":"10.1016/j.pss.2024.105866","url":null,"abstract":"<div><p>A climate model is developed for Earth climate history simulations or snapshots of possible conditions on Earthlike exoplanets. It includes estimates for shortwave and longwave optical thickness based on data from Venus, Earth, and Mars; expressions for atmospheric shortwave absorption and surface convective heat loss; climate feedbacks due to water vapor, ice-albedo, clouds, and lapse rate; and a new model for planetary and surface albedo which takes account of surface cover, Rayleigh scattering, and differing wavelength fractions due to primary spectral class. While somewhat complex, it is still orders of magnitude faster than full-spectrum methods or radiative-convective convergence. The model can be modified for use with tidally locked planets, and is here applied to Proxima Centauri b as an example.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"243 ","pages":"Article 105866"},"PeriodicalIF":2.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140043911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An insight into India's Moon mission – Chandrayan-3: The first nation to land on the southernmost polar region of the Moon","authors":"Nand Jee Kanu , Eva Gupta , Girish C. Verma","doi":"10.1016/j.pss.2024.105864","DOIUrl":"10.1016/j.pss.2024.105864","url":null,"abstract":"<div><p>With the mission's completion, India became only the fourth nation in history to successfully perform a soft landing on the Moon and the first nation to land a spacecraft close to the lunar south pole. The purpose of the article is to present a comprehensive review of the Chandrayaan-3 mission (a sequel operation to Chandrayaan-2) to demonstrate complete capabilities in secure lunar landing and exploration on the Moon's surface. It is equipped with a Vikram lander and Pragyan rover. An in-depth review is carried out to discuss the findings of the Chandrayaan-3 mission. The goals of Chandrayaan-3's mission are: (a) to show a safe and soft landing on the surface of the Moon; (b) to showcase roving lunar rover technology; and (c) to carry out in-situ scientific research. The goals are achieved through the lander payloads, which include the Langmuir Probe (LP), Chandra's Surface Thermophysical Experiment (ChaSTE), Instrument for Lunar Seismic Activity (ILSA), and Chandra's Surface Thermophysical Experiment (ChaSTE) to measure thermal conductivity and temperature. For lunar laser-ranging investigations, the space agency NASA has provided a passive Laser Retroreflector Array. The Alpha Particle X-ray Spectrometer (APXS) and the Laser Induced Breakdown Spectroscope (LIBS) are rover payloads that were used to determine the elemental composition close to the landing site. The mission goals are highly accomplished with the successful hop experiment of Vikram on the Chandrayaan-3 mission! As ordered, it raised itself to a height of around 40 cm, turned on its engines, and then made a safe landing between 30 and 40 cm away. To put an end to the controversy, the study finishes with highlights on (a) the significant area of the southernmost polar region of the Moon with latitudes ranging from 60 to 90°S and (b) Shiv Shakti point (coordinates 69.373°S 32.319°E).</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"242 ","pages":"Article 105864"},"PeriodicalIF":2.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anthony B. Davis , Kevin H. Baines , Brian M. Sutin , James A. Cutts , Leonard I. Dorsky , Paul K. Byrne
{"title":"Feasibility of high-spatial-resolution nighttime near-IR imaging of Venus’ surface from a platform just below the clouds: A radiative transfer study accounting for the potential of haze","authors":"Anthony B. Davis , Kevin H. Baines , Brian M. Sutin , James A. Cutts , Leonard I. Dorsky , Paul K. Byrne","doi":"10.1016/j.pss.2024.105853","DOIUrl":"https://doi.org/10.1016/j.pss.2024.105853","url":null,"abstract":"<div><p>We use a customized radiative transfer model to show that sharp (<span><math><mo>∼</mo></math></span>10 m resolution) images of the Venus surface can be achieved at night in spectral windows free of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> absorption found between 1.0 and <span><math><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> using a camera at 47 km altitude, just below the planet’s optically thick clouds. This is in spite of the Rayleigh scattering by the dense but still semi-transparent lower atmosphere, and the potential for underlying hazes beneath the clouds. The thermal radiation transmitted directly to the camera forms images of spatially varying surface emissivity and/or temperature at the native sensor resolution, platform stability permitting and under reasonable seeing conditions. Near-isotropic Rayleigh scattering dominates in the <span><math><mrow><mn>1</mn><mo>.</mo><mn>0</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> window. Combined with near-Lambertian reflections off the base of the cloud layer, the diffuse light field builds up a background radiance from surface emission averaged spatially out to several 10s of km, i.e., beyond the camera’s field-of-view. At the longer wavelengths (1.1 and <span><math><mrow><mn>1</mn><mo>.</mo><mn>18</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> windows), the sub-cloud atmosphere itself partially absorbs (hence less direct light), and therefore weakly emits (hence more background light), but the rapidly decreasing Rayleigh scattering compensates and contrast is maintained. In all cases, we demonstrate that the directly-transmitted surface-leaving radiance from the native sensor resolution element (<span><math><mo>∼</mo></math></span>10 m) is a significant fraction of the total radiance, and thus can be detected above the background light. Extending down to the 0.85 and <span><math><mrow><mn>0</mn><mo>.</mo><mn>90</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> spectral windows, there is less direct and more background due to the enhanced Rayleigh scattering, but the resulting reduction in contrast can be mitigated by co-adding the <span><math><mo>∼</mo></math></span>10 m pixels. This technological advance will open a new era in Venusian geology by enabling discrimination between different surface materials at fine scales. Moreover, potentially active volcanism on our sister planet may be revealed by surface spots that are much hotter than their surroundings.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"242 ","pages":"Article 105853"},"PeriodicalIF":2.4,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139726307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}