Chenxu Zhao , Zongyu Yue , Kaichang Di , Yutong Jia , Wing-Huen Ip , Yangting Lin , Bo Wu , Biao Wang , Bin Xie
{"title":"Asymmetrical distribution of 1–20 km craters on the Moon","authors":"Chenxu Zhao , Zongyu Yue , Kaichang Di , Yutong Jia , Wing-Huen Ip , Yangting Lin , Bo Wu , Biao Wang , Bin Xie","doi":"10.1016/j.pss.2024.106015","DOIUrl":null,"url":null,"abstract":"<div><div>Previous studies have provided evidence for the synchronous rotation induced cratering asymmetry on lunar surface through numerical simulations and statistical analysis of a limited number of fresh craters. In this study, we reevaluated cratering asymmetry in lunar highland from (70°W, 60°N) to (70°E, 60°S) region using a new crater catalogue with diameters (D) ranging from 1 to 20 km. By utilizing a depth-to-diameter (d/D) ratio constraint to exclude the interference of degraded and secondary craters, we observed significant asymmetry in craters with d/D > 0.15. Moreover, leveraging the characteristic that larger diameter craters (D > 7 km) are less susceptible to degradation, we observed a more pronounced asymmetry with increasing diameter. Particularly, impact craters with larger D and d/D ratios (D > 7 km, d/D > 0.15) displayed an asymmetrical longitudinal distribution, aligning with predictions from the theoretical model. In the diameter range of 10 km–20km, for craters with d/D > 0.15, we observed that new crater influx occurring after 4.0 Ga years ago contributed little to this particular crater population. Therefore, we suggest that the cratering asymmetry was already present before 4.0 Ga. Due to the non-uniform ejecta from the Orientale Basin onto the highland regions, a significant number of smaller impact craters (1–5 km) have degraded or disappeared in the leading region, thereby diminishing the manifestation of the cratering asymmetry. The pronounced asymmetry exhibited in our statistical results might suggest the existence of a significant population of low-velocity impactors in early impact period (>4Ga) around the cis-lunar space.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"254 ","pages":"Article 106015"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003206332400179X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies have provided evidence for the synchronous rotation induced cratering asymmetry on lunar surface through numerical simulations and statistical analysis of a limited number of fresh craters. In this study, we reevaluated cratering asymmetry in lunar highland from (70°W, 60°N) to (70°E, 60°S) region using a new crater catalogue with diameters (D) ranging from 1 to 20 km. By utilizing a depth-to-diameter (d/D) ratio constraint to exclude the interference of degraded and secondary craters, we observed significant asymmetry in craters with d/D > 0.15. Moreover, leveraging the characteristic that larger diameter craters (D > 7 km) are less susceptible to degradation, we observed a more pronounced asymmetry with increasing diameter. Particularly, impact craters with larger D and d/D ratios (D > 7 km, d/D > 0.15) displayed an asymmetrical longitudinal distribution, aligning with predictions from the theoretical model. In the diameter range of 10 km–20km, for craters with d/D > 0.15, we observed that new crater influx occurring after 4.0 Ga years ago contributed little to this particular crater population. Therefore, we suggest that the cratering asymmetry was already present before 4.0 Ga. Due to the non-uniform ejecta from the Orientale Basin onto the highland regions, a significant number of smaller impact craters (1–5 km) have degraded or disappeared in the leading region, thereby diminishing the manifestation of the cratering asymmetry. The pronounced asymmetry exhibited in our statistical results might suggest the existence of a significant population of low-velocity impactors in early impact period (>4Ga) around the cis-lunar space.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research