{"title":"Proceedings of the 2023 Viral Clearance Symposium, Session 6: Viral Inactivation.","authors":"Junfen Ma, David Roush","doi":"10.5731/pdajpst.2024.002246","DOIUrl":"https://doi.org/10.5731/pdajpst.2024.002246","url":null,"abstract":"<p><p>The use of detergents or low pH hold are commonly employed techniques in biologics downstream processing to inactivate enveloped viruses. These approaches have been demonstrated to be robust and are detailed in ASTM E2888 (low pH) and ASTM E3042-16 (Triton X-100), accordingly. One of the recent challenges is the need for a replacement of Triton X-100 with a more environmentally friendly detergent with similar log10 reduction value (LRV) achieved. The presentations in this session focused on a detailed assessment of a range of detergents. The most well characterized and potentially robust detergents identified were TDAO (n-Tetradecyl-N,N-dimethylamine-N-oxide) and Simulsol SL 11 W. Key performance factors assessed (in direct comparison with the industry standard Triton X-100) were viral inactivation kinetics (total elapsed time to achieve equilibrium), LRV achieved of enveloped viruses, toxicity, potential impact on product quality and process performance, clearance of residual detergent in subsequent downstream steps, assays to support assessment with appropriate limit of quantification, and commercial supply of detergent of the appropriate quality standard. Both TDAO and Simulsol SL11 had similar overall LRV as Triton-100. In addition, for the low pH viral inactivation, reduced LRV was observed at pH > 3.70 and low salt concentration (outside of the ASTM range), which is a cautionary note when applying low pH inactivation to labile proteins.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":"78 2","pages":"187-195"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140855729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proceedings of the 2023 Viral Clearance Symposium, Session 8: Cell Banks, Advanced Technologies (ATMPs, NGS).","authors":"Johanna Kindermann, Thomas R Kreil","doi":"10.5731/pdajpst.2024.002248","DOIUrl":"https://doi.org/10.5731/pdajpst.2024.002248","url":null,"abstract":"<p><p>The Cell Banks, Advanced Technologies (ATMPs, NGS) session at the 2023 Viral Clearance Symposium (VCS) focused on the assurance of high virus safety profiles of advanced technology medicinal products (ATMPs) by implementation of advanced virus detection methods using rapid and sensitive technologies, such as next-generation sequencing (NGS). All presentations in this session made the need to replace in vivo testing for viruses by new technologies that have been demonstrated to be incomparably broad in their detection capabilities and can even detect unknown viruses. An evaluation of historical data collected by the Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) from their members' in vivo and in vitro adventitious virus test experience as well as on using NGS was presented. The data convincingly supported the necessity to replace in vivo testing with faster, broader, more sensitive, more accurate, and more specific virus detection methods. Additionally, a collaborative study-initiated by the CAACB-with the goal to revisit traditional adventitious agent testing by using targeted NGS to replace in vivo and in vitro tests for well-known and broadly used Chinese hamster ovary (CHO) cells was presented, including the planned risk-assessment approach using prior knowledge and historical data. Overall, this session demonstrated that the use of new virus detection methods, such as NGS, represents a great opportunity to provide sufficient viral safety margins, specifically, for ATMPs, where downstream virus clearance is not possible. This path forward is also supported by the final ICH Q5A(R2) guideline.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":"78 2","pages":"206-211"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140864697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proceedings of the 2023 Viral Clearance Symposium, Session 4: Continuous Processing.","authors":"John Fisher, Scott Lute","doi":"10.5731/pdajpst.2024.002244","DOIUrl":"https://doi.org/10.5731/pdajpst.2024.002244","url":null,"abstract":"<p><p>The continuous processing session at the 2023 Viral Clearance Symposium (VCS) focused on understanding how to effectively design viral clearance operations for use in continuous processes and methods to perform viral clearance studies. In this session, an approach to directly address control considerations with operating continuous-flow reactors for low pH viral inactivation was presented. Continuous-flow low pH incubation chamber design and implications for residence time determination were discussed. Additionally, viral clearance capability between batch operation and connected operation were demonstrated to be comparable for a connected bind-elute chromatography and flow-through chromatography step. Overall, this session provided additional scientific knowledge to support viral clearance strategies when implementing a continuous manufacturing process.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":"78 2","pages":"169-175"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alfred Haglind, Emil Håkansson, Nils Wallménius, Annelie Hansson, Karin Isaksson
{"title":"Leachables analysis from a closed connected single-use mAb purification process","authors":"Alfred Haglind, Emil Håkansson, Nils Wallménius, Annelie Hansson, Karin Isaksson","doi":"10.5731/pdajpst.2022.012810","DOIUrl":"https://doi.org/10.5731/pdajpst.2022.012810","url":null,"abstract":"","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":"21 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140439837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Heussner, Marlene Hermann, Melanie Zerulla-Wernitz
{"title":"Development and validation of a customized Amplex UltraRed assay for sensitive hydrogen peroxide detection in pharmaceutical water","authors":"A. Heussner, Marlene Hermann, Melanie Zerulla-Wernitz","doi":"10.5731/pdajpst.2022.012758","DOIUrl":"https://doi.org/10.5731/pdajpst.2022.012758","url":null,"abstract":"","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":"3 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140441637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dennis Jenke, Piet Christiaens, Philippe Verlinde, Jan Baeten, J. Beusen
{"title":"Correlating GC/MS Relative Response Factors to Analyte′s Physicochemical and Chromatographic Properties to Facilitate the Quantitation of Organic Extractables and Leachables in Non-targeted Analysis (NTA) I. Concepts and Empirical Considerations","authors":"Dennis Jenke, Piet Christiaens, Philippe Verlinde, Jan Baeten, J. Beusen","doi":"10.5731/pdajpst.2023.012884","DOIUrl":"https://doi.org/10.5731/pdajpst.2023.012884","url":null,"abstract":"","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140440007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cheryl L M Stults, Christine L Lanning, Lee M Nagao, James Conners
{"title":"Biocompatibility Considerations for Orally Inhaled and Nasal Drug Products and Other Drug--Device Combination Products.","authors":"Cheryl L M Stults, Christine L Lanning, Lee M Nagao, James Conners","doi":"10.5731/pdajpst.2023.012852","DOIUrl":"10.5731/pdajpst.2023.012852","url":null,"abstract":"<p><p>Biocompatibility considerations have historically been important for orally inhaled and nasal drug products (OINDPs) and other drug-device combination products, because finished device components and packaging in these products are often in direct contact with formulation and the patient. The International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) discusses, in this article, the current regulatory landscape associated with biocompatibility and how biocompatibility is typically assessed for OINDPs, including risk management considerations and navigation of regulatory requirements. The article also describes current challenges related to alignment of regulatory expectations, particularly for drug-device combination products, and proposes some questions and topics for further discussion with regulatory agencies and other stakeholders to help advance alignment. To further illustrate current challenges and industry approaches to meeting biocompatibility requirements, we also present results of an IPAC-RS benchmarking survey and case studies.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":" ","pages":"125-139"},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136398657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Excipient and Packaging Material Impact on Glass and Polymer-Based Prefilled Syringe Functionality.","authors":"Liang Fang, Marissa Rase","doi":"10.5731/pdajpst.2022.012760","DOIUrl":"10.5731/pdajpst.2022.012760","url":null,"abstract":"<p><p>Compared to glass prefilled syringes (PFSs), cyclic olefin polymer (COP) PFS showed more consistent and predictable extrusion forces when exposed to a variety of excipient combinations (buffers, tonicity agents, and surfactants) at various accelerated storage conditions. Furthermore, COP PFSs also showed significantly less variance in extrusion forces within each individual stroke, which is critical for precision applications. Observed performance differences can be explained by fundamental differences in the stability and homogeneity of the primary packaging materials (i.e., COP vs siliconized glass) and their physicochemical interactions with excipients.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":" ","pages":"70-89"},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10253747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Challenges Associated with Biological Safety Assessments for Drug-Device Combination Products.","authors":"Cheryl L M Stults, Diane Harper, Doris Zane","doi":"10.5731/pdajpst.2022.012822","DOIUrl":"10.5731/pdajpst.2022.012822","url":null,"abstract":"<p><p>Biological safety assessments for drug-device combination products involve evaluation of the drug container closure and the device constituent part. When the device constituent part is the drug delivery system as well as the drug container closure system, both device and drug-based packaging standards have been deemed applicable. Approaches used for the biological safety assessment of medical devices differ from those used for pharmaceutical packaging/delivery systems. One area of difference is the extent to which chemical characterization with toxicological assessment is used either in addition to, or in place of, biological in vivo or in vitro tests. Differences also exist in the way nonclinical studies are used to evaluate the safety of medical devices or drug delivery systems. The lack of alignment in standards and guidance has resulted in confusion over what combination of tests and methods of evaluation constitute a biological safety assessment that will meet regulatory expectations for a drug-device combination product. The intent of this article is to discuss the challenges created when the packaging or delivery system is also a device constituent part of a drug-device combination product. Suggestions are offered regarding approaches that may be useful for conducting suitable biological safety assessments for drug-device combination products.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":" ","pages":"100-124"},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41237602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Klaus Wormuth, Fanny Gaston, Melanie Gauthier, Veronique Cantin, Nelly Montenay
{"title":"Best Practices to Quantify and Identify Particulate Matter on the Interior Surfaces of Single-Use Systems.","authors":"Klaus Wormuth, Fanny Gaston, Melanie Gauthier, Veronique Cantin, Nelly Montenay","doi":"10.5731/pdajpst.2022.012755","DOIUrl":"10.5731/pdajpst.2022.012755","url":null,"abstract":"<p><p>The manufacturing of a wide range of biopharmaceuticals, from antibodies and vaccines to cell-based therapies, increasingly takes place in single-use processing equipment. Manufactured in clean rooms and sealed and sterilized, single-use systems (SUSs) are ready-to-use and easily scalable. Controls in the \"clean-build\" manufacturing of SUSs reduce the probability of occurrence of particulate matter in SUSs. However, the size, complexity, and limited transparency of SUSs clearly limit the detectability of particulate matter on the interior (fluid-contacting) surfaces of a SUS during a visual inspection, as demonstrated in a recent study. In applications downstream of final filters or in aseptic processing, particulate matter on the surfaces of a SUS could detach and contaminate the final drug product. A realistic assessment of this risk requires reliable test methods that quantify and identify particulate matter present on the interior surfaces of SUSs. Clearly problematic is the common certification of the cleanliness of a SUS via a force-fit adaptation of the pharmacopeial standard USP <788> entitled \"Particulate Matter in Injections\". USP <788> does not describe a procedure for extraction of particulate matter from the interior surfaces of SUSs. In addition, application of Method 1 Light Obscuration significantly limits the probability of detection for particles in the visible size range (≥ 100 µm). In this article, we describe best practices for extracting, counting, sizing, and chemically identifying particulate matter on the interior surfaces of SUSs. Highly effective procedures for the extraction of particulate matter result from application of the qualification methodology described in a recently published ASTM standard. Filtration of the liquid extract concentrates particulate matter onto the surface of a membrane filter, allowing rapid particle counting and sizing using automated membrane microscopy, along with detailed chemical identification using infrared microscopy and/or automated confocal Raman microscopy.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":" ","pages":"90-99"},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10253748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}