{"title":"An Outlier Robust Filter for Maritime Robotics Applications","authors":"G. Indiveri","doi":"10.2478/pjbr-2013-0012","DOIUrl":"https://doi.org/10.2478/pjbr-2013-0012","url":null,"abstract":"Abstract Navigation systems of autonomous vehicles often exploit range measurement information that may be affected by outliers. In marine application the presence of outliers in sonar bathymetry, for instance, can be particularly severe due to multipath phenomena in the acoustic propagation. This paper describes a possible approach to process range measurements highly contaminated by outliers. The proposed solution builds on a robust parameter identification algorithm minimizing a nonlinear cost function that exploits the mathematical properties of Gibbs entropy. Numerical examples on simulated data are provided to illustrate the method and its performance. The use of simulated data allows to vary the amount of noise and outliers contamination while knowing the ground truth values of the parameters to be identified. For the sake of experimental validation, the method is also applied to third party (publicly available) upward looking sonar ice draft data collected by submarines in the Arctic Ocean.","PeriodicalId":199796,"journal":{"name":"Paladyn J. Behav. Robotics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124924443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Profile Following for Inspection of Underwater Structures","authors":"E. Galceran, N. Palomeras, M. Carreras","doi":"10.2478/pjbr-2013-0019","DOIUrl":"https://doi.org/10.2478/pjbr-2013-0019","url":null,"abstract":"Abstract We present a seabed profile estimation and following method for close proximity inspection of 3D underwater structures using autonomous underwater vehicles (AUVs). The presented method is used to determine a path allowing the AUV to pass its sensors over all points of the target structure, which is known as coverage path planning. Our profile following method goes beyond traditional seabed following at a safe altitude and exploits hovering capabilities of recent AUV developments. A range sonar is used to incrementally construct a local probabilistic map representation of the environment and estimates of the local profile are obtained via linear regression. Two behavior-based controllers use these estimates to perform horizontal and vertical profile following. We build upon these tools to address coverage path planning for 3D underwater structures using a (potentially inaccurate) prior map and following cross-section profiles of the target structure. The feasibility of the proposed method is demonstrated using the GIRONA 500 AUV both in simulation using synthetic and real-world bathymetric data and in pool trials.","PeriodicalId":199796,"journal":{"name":"Paladyn J. Behav. Robotics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121967093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Distributed Algorithm for Cooperative 3D Exploration under Communication Constraints","authors":"R. Rathnam, A. Birk","doi":"10.2478/pjbr-2013-0020","DOIUrl":"https://doi.org/10.2478/pjbr-2013-0020","url":null,"abstract":"Abstract An algorithm for distributed exploration in 3D is presented which always keeps the robots within communication range of each other. The method is based on a greedy optimization strategy that uses a heuristic utility function. This makes it computationally very efficient but it can also lead to local minimums; but related deadlocks can be easily detected during the exploration process and there is an efficient strategy to recover from them. The exploration algorithm is integrated into a complete control infrastructure for Autonomous Underwater Vehicles (AUV) containing sensors, mapping, navigation, and control of actuators. The algorithm is tested in a high fidelity simulator which takes into account the dynamics of the robot, and simulates the required sensors. The effect of the communication range and the number of robots on the algorithm is investigated.","PeriodicalId":199796,"journal":{"name":"Paladyn J. Behav. Robotics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116804581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stochastic Diffusion Search Review","authors":"M. M. al-Rifaie, John Mark Bishop","doi":"10.2478/pjbr-2013-0021","DOIUrl":"https://doi.org/10.2478/pjbr-2013-0021","url":null,"abstract":"Abstract Stochastic Diffusion Search, first incepted in 1989, belongs to the extended family of swarm intelligence algorithms. In contrast to many nature-inspired algorithms, stochastic diffusion search has a strong mathematical framework describing its behaviour and convergence. In addition to concisely exploring the algorithm in the context of natural swarm intelligence systems, this paper reviews various developments of the algorithm, which have been shown to perform well in a variety of application domains including continuous optimisation, implementation on hardware and medical imaging. This algorithm has also being utilised to argue the potential computational creativity of swarm intelligence systems through the two phases of exploration and exploitation.","PeriodicalId":199796,"journal":{"name":"Paladyn J. Behav. Robotics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117080370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using Augmented Reality to Improve Usability of the User Interface for Driving a Telepresence Robot","authors":"Giovanni Mosiello, A. Kiselev, A. Loutfi","doi":"10.2478/pjbr-2013-0018","DOIUrl":"https://doi.org/10.2478/pjbr-2013-0018","url":null,"abstract":"Abstract Mobile Robotic Telepresence (MRP) helps people to communicate in natural ways despite being physically located in different parts of the world. User interfaces of such systems are as critical as the design and functionality of the robot itself for creating conditions for natural interaction. This article presents an exploratory study analysing different robot teleoperation interfaces. The goals of this paper are to investigate the possible effect of using augmented reality as the means to drive a robot, to identify key factors of the user interface in order to improve the user experience through a driving interface, and to minimize interface familiarization time for non-experienced users. The study involved 23 participants whose robot driving attempts via different user interfaces were analysed. The results show that a user interface with an augmented reality interface resulted in better driving experience.","PeriodicalId":199796,"journal":{"name":"Paladyn J. Behav. Robotics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133775194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin Meyer, Kristian Ehlers, C. Osterloh, E. Maehle
{"title":"Smart-E An Autonomous Omnidirectional Underwater Robot","authors":"Benjamin Meyer, Kristian Ehlers, C. Osterloh, E. Maehle","doi":"10.2478/pjbr-2013-0015","DOIUrl":"https://doi.org/10.2478/pjbr-2013-0015","url":null,"abstract":"Abstract The survey of waterbodies or underwater installations is a challenging task. To reduce the danger for divers, Autonomous Underwater Vehicles (AUVs) can be deployed. These requires a high manoeuvrability and agility in order to provide access in hard-to-reach areas. Smart-E is an omnidirectional AUV designed and developed at the Institute of Computer Engineering of the University of Luebeck. The drive is realized by the minimal configuration of three thrusters that are arranged at 120º to each other. To achieve omnidirectional movement in the 3D space, each motor pivots through 180º around its radial axis with the aid of a servo motor. This leads to a manoeuvrability of six degrees of freedom (DOF). Smart-E is equipped with various sensors like a pressure and temperature sensor, a 360º scanning sonar, an IMU-AHRS system and a tilt camera unit at the bottom. Besides the autonomous behaviors, the main challenge is to control all six DOF of the AUV to achieve a smooth and controllable omnidirectional underwater movement even in rough environments.","PeriodicalId":199796,"journal":{"name":"Paladyn J. Behav. Robotics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131580599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of the Novint Falcon haptic device as an actuator in real-time control","authors":"D. Block, Mark B. Michelotti, R. Sreenivas","doi":"10.2478/pjbr-2013-0017","DOIUrl":"https://doi.org/10.2478/pjbr-2013-0017","url":null,"abstract":"Abstract This paper describes the development of an embedded system whose purpose is to control the Novint Falcon as a robot, and to develop a control experiment that demonstrates the use the Novint Falcon as a robotic actuator. The Novint Falcon, which is a PC input device, is “haptic” in the sense that it has a force feedback component. Its relatively low cost compared with other platforms makes it a good candidate for academic application in robot modeling and control. An embedded system is developed to interface with the multiple motors and sensors present in the Novint Falcon, which is subsequently used to control three independent Novint Falcons for a “ballon- plate” experiment. The results show that the device is a viable solution for high-speed actuation of small-scale mechanical systems.","PeriodicalId":199796,"journal":{"name":"Paladyn J. Behav. Robotics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131454956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial. Special Issue on Assistive Robotics","authors":"A. Loutfi, A. Kiselev","doi":"10.2478/pjbr-2013-0016","DOIUrl":"https://doi.org/10.2478/pjbr-2013-0016","url":null,"abstract":"","PeriodicalId":199796,"journal":{"name":"Paladyn J. Behav. Robotics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124811856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomoko Yonezawa, H. Yamazoe, A. Utsumi, Shinji Abe
{"title":"Attractive, Informative, and Communicative Robot System on Guide Plate as an Attendant with Awareness of User’s Gaze","authors":"Tomoko Yonezawa, H. Yamazoe, A. Utsumi, Shinji Abe","doi":"10.2478/pjbr-2013-0008","DOIUrl":"https://doi.org/10.2478/pjbr-2013-0008","url":null,"abstract":"Abstract In this paper, we introduce an interactive guide plate system by adopting a gaze-communicative stuffed-toy robot and a gaze-interactive display board. An attached stuffed-toy robot on the system naturally show anthropomorphic guidance corresponding to the user’s gaze orientation. The guidance is presented through gaze-communicative behaviors of the stuffed-toy robot using joint attention and eye-contact reactions to virtually express its own mind in conjunction with b) vocal guidance and c) projection on the guide plate. We adopted our image-based remote gaze-tracking method to detect the user’s gazing orientation. The results from both empirical studies by subjective / objective evaluations and observations of our demonstration experiments in a semipublic space show i) the total operation of the system, ii) the elicitation of user’s interest by gaze behaviors of the robot, and iii) the effectiveness of the gaze-communicative guide adopting the anthropomorphic robot.","PeriodicalId":199796,"journal":{"name":"Paladyn J. Behav. Robotics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126774423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Lalitharatne, K. Teramoto, Y. Hayashi, K. Kiguchi
{"title":"Towards Hybrid EEG-EMG-Based Control Approaches to be Used in Bio-robotics Applications: Current Status, Challenges and Future Directions","authors":"T. Lalitharatne, K. Teramoto, Y. Hayashi, K. Kiguchi","doi":"10.2478/pjbr-2013-0009","DOIUrl":"https://doi.org/10.2478/pjbr-2013-0009","url":null,"abstract":"Abstract In the last few decades, bio-robotics applications such as exoskeletons, prosthetics and robotic wheelchairs have progressed from machines in science fiction to nearly commercialized products. Though there are still several challenges associated with electromyography (EMG) signals, the advances in use of EMG signals for controlling such bio-robotics applications have been enormous. Similarly, recent trends and attempts in developing electroencephalography- (EEG) based control methods have shown the potential of this area in the modern bio-robotics field. However, the EEG-based control methods are also yet to be perfected. A new approach of combining both these control methods, which take the advantages, and diminish the disadvantages, of each system might therefore be a promising approach. In this paper, we review hybrid fusion of EMG- and EEG-based control approaches in the bio-robotics field which have been attempted or developed to date. We provide a design overview of the method and consider the main features and merits/disadvantagages for the approaches that have been analyzed. We also discuss the current challenges regarding these hybrid EEG-EMG control approaches and propose some potential future directions.","PeriodicalId":199796,"journal":{"name":"Paladyn J. Behav. Robotics","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123807622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}