An Outlier Robust Filter for Maritime Robotics Applications

G. Indiveri
{"title":"An Outlier Robust Filter for Maritime Robotics Applications","authors":"G. Indiveri","doi":"10.2478/pjbr-2013-0012","DOIUrl":null,"url":null,"abstract":"Abstract Navigation systems of autonomous vehicles often exploit range measurement information that may be affected by outliers. In marine application the presence of outliers in sonar bathymetry, for instance, can be particularly severe due to multipath phenomena in the acoustic propagation. This paper describes a possible approach to process range measurements highly contaminated by outliers. The proposed solution builds on a robust parameter identification algorithm minimizing a nonlinear cost function that exploits the mathematical properties of Gibbs entropy. Numerical examples on simulated data are provided to illustrate the method and its performance. The use of simulated data allows to vary the amount of noise and outliers contamination while knowing the ground truth values of the parameters to be identified. For the sake of experimental validation, the method is also applied to third party (publicly available) upward looking sonar ice draft data collected by submarines in the Arctic Ocean.","PeriodicalId":199796,"journal":{"name":"Paladyn J. Behav. Robotics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paladyn J. Behav. Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pjbr-2013-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Navigation systems of autonomous vehicles often exploit range measurement information that may be affected by outliers. In marine application the presence of outliers in sonar bathymetry, for instance, can be particularly severe due to multipath phenomena in the acoustic propagation. This paper describes a possible approach to process range measurements highly contaminated by outliers. The proposed solution builds on a robust parameter identification algorithm minimizing a nonlinear cost function that exploits the mathematical properties of Gibbs entropy. Numerical examples on simulated data are provided to illustrate the method and its performance. The use of simulated data allows to vary the amount of noise and outliers contamination while knowing the ground truth values of the parameters to be identified. For the sake of experimental validation, the method is also applied to third party (publicly available) upward looking sonar ice draft data collected by submarines in the Arctic Ocean.
海事机器人应用的离群鲁棒滤波器
自动驾驶汽车导航系统经常利用距离测量信息,这些信息可能受到离群值的影响。例如,在海洋应用中,声纳测深中异常值的存在可能会由于声传播中的多径现象而特别严重。本文描述了一种可能的方法来测量高度被异常值污染的过程范围。提出的解决方案建立在一个鲁棒的参数识别算法最小化非线性成本函数,利用吉布斯熵的数学性质。通过仿真数据的算例说明了该方法及其性能。模拟数据的使用允许改变噪声和异常污染的量,同时知道要识别的参数的地面真值。为了实验验证,还将该方法应用于北冰洋潜艇采集的第三方(公开)上视声纳冰吃水数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信