{"title":"On sample size calculation in drug interaction trials.","authors":"Paul Meyvisch, Mitra Ebrahimpoor","doi":"10.1002/pst.2367","DOIUrl":"10.1002/pst.2367","url":null,"abstract":"<p><p>Drug-drug interaction (DDI) trials are an important part of drug development as they provide evidence on the benefits and risks when two or more drugs are taken concomitantly. Sample size calculation is typically recommended to be based on the existence of clinically justified no-effect boundaries but these are challenging to define in practice, while the default no-effect boundaries of 0.8-1.25 are known to be overly conservative requiring a large sample size. In addition, no-effect boundaries are of little use when there is prior pharmacological evidence that a mild or moderate interaction between two drugs may be present, in which case effect boundaries would be more useful. We introduce precision-based sample size calculation that accounts for both the stochastic nature of the pharmacokinetic parameters and the anticipated width of (no-)effect boundaries, should these exist. The methodology is straightforward, requires considerably less sample size and has favorable operating characteristics. A case study on statins is presented to illustrate the ideas.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"530-539"},"PeriodicalIF":1.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139735785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the relative conservativeness of Bayesian logistic regression method in oncology dose-finding studies.","authors":"Cheng-Han Yang, Guanghui Cheng, Ruitao Lin","doi":"10.1002/pst.2364","DOIUrl":"10.1002/pst.2364","url":null,"abstract":"<p><p>The Bayesian logistic regression method (BLRM) is a widely adopted and flexible design for finding the maximum tolerated dose in oncology phase I studies. However, the BLRM design has been criticized in the literature for being overly conservative due to the use of the overdose control rule. Recently, a discussion paper titled \"Improving the performance of Bayesian logistic regression model with overall control in oncology dose-finding studies\" in Statistics in Medicine has proposed an overall control rule to address the \"excessive conservativeness\" of the standard BLRM design. In this short communication, we discuss the relative conservativeness of the standard BLRM design and also suggest a dose-switching rule to further enhance its performance.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"585-594"},"PeriodicalIF":1.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139692643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transporting randomized trial results to estimate counterfactual survival functions in target populations.","authors":"Zhiqiang Cao, Youngjoo Cho, Fan Li","doi":"10.1002/pst.2354","DOIUrl":"10.1002/pst.2354","url":null,"abstract":"<p><p>When the distributions of treatment effect modifiers differ between a randomized trial and an external target population, the sample average treatment effect in the trial may be substantially different from the target population average treatment, and accurate estimation of the latter requires adjusting for the differential distribution of effect modifiers. Despite the increasingly rich literature on transportability, little attention has been devoted to methods for transporting trial results to estimate counterfactual survival functions in target populations, when the primary outcome is time to event and subject to right censoring. In this article, we study inverse probability weighting and doubly robust estimators to estimate counterfactual survival functions and the target average survival treatment effect in the target population, and provide their respective approximate variance estimators. We focus on a common scenario where the target population information is observed only through a complex survey, and elucidate how the survey weights can be incorporated into each estimator we considered. Simulation studies are conducted to examine the finite-sample performances of the proposed estimators in terms of bias, efficiency and coverage, under both correct and incorrect model specifications. Finally, we apply the proposed method to assess transportability of the results in the Action to Control Cardiovascular Risk in Diabetes-Blood Pressure (ACCORD-BP) trial to all adults with Diabetes in the United States.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"442-465"},"PeriodicalIF":1.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139484744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shrinkage priors for isotonic probability vectors and binary data modeling, with applications to dose-response modeling.","authors":"Philip S Boonstra, Daniel R Owen, Jian Kang","doi":"10.1002/pst.2372","DOIUrl":"10.1002/pst.2372","url":null,"abstract":"<p><p>Motivated by the need to model dose-response or dose-toxicity curves in clinical trials, we develop a new horseshoe-based prior for Bayesian isotonic regression modeling a binary outcome against an ordered categorical predictor, where the probability of the outcome is assumed to be monotonically non-decreasing with the predictor. The set of differences between outcome probabilities in consecutive categories of the predictor is equipped with a multivariate prior having support over simplex. The Dirichlet distribution, which can be derived from a normalized sum of independent gamma-distributed random variables, is a natural choice of prior, but using mathematical and simulation-based arguments, we show that the resulting posterior is prone to underflow and other numerical instabilities, even under simple data configurations. We propose an alternative prior based on horseshoe-type shrinkage that is numerically more stable. We show that this horseshoe-based prior is not subject to the numerical instability seen in the Dirichlet/gamma-based prior and that the horseshoe-based posterior can estimate the underlying true curve more efficiently than the Dirichlet-based one. We demonstrate the use of this prior in a model predicting the occurrence of radiation-induced lung toxicity in lung cancer patients as a function of dose delivered to normal lung tissue. Our methodology is implemented in the R package isotonicBayes and therefore suitable for use in the design of dose-finding studies or other dose-response modeling contexts.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"540-556"},"PeriodicalIF":1.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139940445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The flaw of averages: Bayes factors as posterior means of the likelihood ratio.","authors":"Charles C Liu, Ron Xiaolong Yu, Murray Aitkin","doi":"10.1002/pst.2355","DOIUrl":"10.1002/pst.2355","url":null,"abstract":"<p><p>As an alternative to the Frequentist p-value, the Bayes factor (or ratio of marginal likelihoods) has been regarded as one of the primary tools for Bayesian hypothesis testing. In recent years, several researchers have begun to re-analyze results from prominent medical journals, as well as from trials for FDA-approved drugs, to show that Bayes factors often give divergent conclusions from those of p-values. In this paper, we investigate the claim that Bayes factors are straightforward to interpret as directly quantifying the relative strength of evidence. In particular, we show that for nested hypotheses with consistent priors, the Bayes factor for the null over the alternative hypothesis is the posterior mean of the likelihood ratio. By re-analyzing 39 results previously published in the New England Journal of Medicine, we demonstrate how the posterior distribution of the likelihood ratio can be computed and visualized, providing useful information beyond the posterior mean alone.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"466-479"},"PeriodicalIF":1.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing Xia, Kentaro Takeda, Yusuke Yamaguchi, Jun Zhang
{"title":"A generalized Bayesian optimal interval design for dose optimization in immunotherapy.","authors":"Qing Xia, Kentaro Takeda, Yusuke Yamaguchi, Jun Zhang","doi":"10.1002/pst.2369","DOIUrl":"10.1002/pst.2369","url":null,"abstract":"<p><p>For novel immuno-oncology therapies, the primary purpose of a dose-finding trial is to identify an optimal dose (OD), defined as the tolerable dose having adequate efficacy and immune response under the unpredictable dose-outcome (toxicity, efficacy, and immune response) relationships. In addition, the multiple low or moderate-grade toxicities rather than dose-limiting toxicities (DLTs) and multiple levels of efficacy should be evaluated differently in dose-finding to determine true OD for developing novel immuno-oncology therapies. We proposed a generalized Bayesian optimal interval design for immunotherapy, simultaneously considering efficacy and toxicity grades and immune response outcomes. The proposed design, named gBOIN-ETI design, is model-assisted and easy to implement to develop immunotherapy efficiently. The operating characteristics of the gBOIN-ETI are compared with other dose-finding trial designs in oncology by simulation across various realistic settings. Our simulations show that the gBOIN-ETI design could outperform the other available approaches in terms of both the percentage of correct OD selection and the average number of patients allocated to the OD across various realistic trial settings.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"480-494"},"PeriodicalIF":1.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Potter, Thomas Bradstreet, Davit Sargsyan, Xiao Tan, Vinicius Bonato, Dingzhou Li, John Liang, Ondrej Libiger, Jocelyn Sendecki, John Stansfield, Kanaka Tatikola, Jialin Xu, Brandy Campbell
{"title":"The partnership between statisticians and the Institutional Animal Care and Use Committee (IACUC).","authors":"David Potter, Thomas Bradstreet, Davit Sargsyan, Xiao Tan, Vinicius Bonato, Dingzhou Li, John Liang, Ondrej Libiger, Jocelyn Sendecki, John Stansfield, Kanaka Tatikola, Jialin Xu, Brandy Campbell","doi":"10.1002/pst.2390","DOIUrl":"https://doi.org/10.1002/pst.2390","url":null,"abstract":"<p><p>In this tutorial we explore the valuable partnership between statisticians and Institutional Animal Care and Use Committees (IACUCs) in the context of animal research, shedding light on the critical role statisticians play in ensuring the ethical and scientifically rigorous use of animals in research. Pharmaceutical statisticians have increasingly become vital members of these committees, contributing expertise in study design, data analysis, and interpretation, and working more generally to facilitate the integration of good statistical practices into experimental procedures. We review the \"3Rs\" principles (Replacement, Reduction, and Refinement) which are the foundation for the humane use of animals in scientific research, and how statisticians can partner with IACUC to help ensure robust and reproducible research while adhering to the 3Rs principles. We also highlight emerging areas of interest, such as the use of virtual control groups.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinicius Bonato, Szu-Yu Tang, Matilda Hsieh, Yao Zhang, Shibing Deng
{"title":"Experimental design considerations and statistical analyses in preclinical tumor growth inhibition studies.","authors":"Vinicius Bonato, Szu-Yu Tang, Matilda Hsieh, Yao Zhang, Shibing Deng","doi":"10.1002/pst.2399","DOIUrl":"https://doi.org/10.1002/pst.2399","url":null,"abstract":"<p><p>Animal models are used in cancer pre-clinical research to identify drug targets, select compound candidates for clinical trials, determine optimal drug dosages, identify biomarkers, and ensure compound safety. This tutorial aims to provide an overview of study design and data analysis from animal studies, focusing on tumor growth inhibition (TGI) studies used for prioritization of anticancer compounds. Some of the experimental design aspects discussed here include the selection of the appropriate biological models, the choice of endpoints to be used for the assessment of anticancer activity (tumor volumes, tumor growth rates, events, or categorical endpoints), considerations on measurement errors and potential biases related to this type of study, sample size estimation, and discussions on missing data handling. The tutorial also reviews the statistical analyses employed in TGI studies, considering both continuous endpoints collected at single time-point and continuous endpoints collected longitudinally over multiple time-points. Additionally, time-to-event analysis is discussed for studies focusing on event occurrences such as animal deaths or tumor size reaching a certain threshold. Furthermore, for TGI studies involving categorical endpoints, statistical methodology is outlined to compare outcomes among treatment groups effectively. Lastly, this tutorial also discusses analysis for assessing drug combination synergy in TGI studies, which involves combining treatments to enhance overall treatment efficacy. The tutorial also includes R sample scripts to help users to perform relevant data analysis of this topic.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zixing Wang, Qingyang Zhang, Allen Xue, James Whitmore
{"title":"Sample size calculation for mixture model based on geometric average hazard ratio and its applications to nonproportional hazard.","authors":"Zixing Wang, Qingyang Zhang, Allen Xue, James Whitmore","doi":"10.1002/pst.2353","DOIUrl":"10.1002/pst.2353","url":null,"abstract":"<p><p>With the advent of cancer immunotherapy, some special features including delayed treatment effect, cure rate, diminishing treatment effect and crossing survival are often observed in survival analysis. They violate the proportional hazard model assumption and pose a unique challenge for the conventional trial design and analysis strategies. Many methods like cure rate model have been developed based on mixture model to incorporate some of these features. In this work, we extend the mixture model to deal with multiple non-proportional patterns and develop its geometric average hazard ratio (gAHR) to quantify the treatment effect. We further derive a sample size and power formula based on the non-centrality parameter of the log-rank test and conduct a thorough analysis of the impact of each parameter on performance. Simulation studies showed a clear advantage of our new method over the proportional hazard based calculation across different non-proportional hazard scenarios. Moreover, the mixture modeling of two real trials demonstrates how to use the prior information on the survival distribution among patients with different biomarker and early efficacy results in practice. By comparison with a simulation-based design, the new method provided a more efficient way to compute the power and sample size with high accuracy of estimation. Overall, both theoretical derivation and empirical studies demonstrate the promise of the proposed method in powering future innovative trial designs.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"325-338"},"PeriodicalIF":1.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139049061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Going beyond probability of success: Opportunities for statisticians to influence quantitative decision-making at the portfolio level.","authors":"Stig-Johan Wiklund, Katharine Thorn, Heiko Götte, Kimberley Hacquoil, Gaëlle Saint-Hilary, Alex Carlton","doi":"10.1002/pst.2361","DOIUrl":"10.1002/pst.2361","url":null,"abstract":"<p><p>The pharmaceutical industry is plagued with long, costly development and high risk. Therefore, a company's effective management and optimisation of a portfolio of projects is critical for success. Project metrics such as the probability of success enable modelling of a company's pipeline accounting for the high uncertainty inherent within the industry. Making portfolio decisions inherently involves managing risk, and statisticians are ideally positioned to champion not only the derivation of metrics for individual projects, but also advocate decision-making at a broader portfolio level. This article aims to examine the existing different portfolio decision-making approaches and to suggest opportunities for statisticians to add value in terms of introducing probabilistic thinking, quantitative decision-making, and increasingly advanced methodologies.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"429-438"},"PeriodicalIF":1.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139425264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}