Optimal Cut-Point Selection Methods Under Binary Classification When Subclasses Are Involved.

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Pharmaceutical Statistics Pub Date : 2024-11-01 Epub Date: 2024-07-07 DOI:10.1002/pst.2413
Jia Wang, Lili Tian
{"title":"Optimal Cut-Point Selection Methods Under Binary Classification When Subclasses Are Involved.","authors":"Jia Wang, Lili Tian","doi":"10.1002/pst.2413","DOIUrl":null,"url":null,"abstract":"<p><p>In practice, we often encounter binary classification problems where both main classes consist of multiple subclasses. For example, in an ovarian cancer study where biomarkers were evaluated for their accuracy of distinguishing noncancer cases from cancer cases, the noncancer class consists of healthy subjects and benign cases, while the cancer class consists of subjects at both early and late stages. This article aims to provide a large number of optimal cut-point selection methods for such setting. Furthermore, we also study confidence interval estimation of the optimal cut-points. Simulation studies are carried out to explore the performance of the proposed cut-point selection methods as well as confidence interval estimation methods. A real ovarian cancer data set is analyzed using the proposed methods.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"984-1030"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2413","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In practice, we often encounter binary classification problems where both main classes consist of multiple subclasses. For example, in an ovarian cancer study where biomarkers were evaluated for their accuracy of distinguishing noncancer cases from cancer cases, the noncancer class consists of healthy subjects and benign cases, while the cancer class consists of subjects at both early and late stages. This article aims to provide a large number of optimal cut-point selection methods for such setting. Furthermore, we also study confidence interval estimation of the optimal cut-points. Simulation studies are carried out to explore the performance of the proposed cut-point selection methods as well as confidence interval estimation methods. A real ovarian cancer data set is analyzed using the proposed methods.

二元分类下涉及子类时的最佳切点选择方法
在实践中,我们经常会遇到二元分类问题,其中两个主类都由多个子类组成。例如,在一项评估生物标记物区分非癌症病例和癌症病例准确性的卵巢癌研究中,非癌症类包括健康受试者和良性病例,而癌症类包括早期和晚期受试者。本文旨在为这种情况提供大量最佳切点选择方法。此外,我们还研究了最佳切点的置信区间估计。我们进行了模拟研究,以探索所提出的切点选择方法和置信区间估计方法的性能。使用所提出的方法分析了一个真实的卵巢癌数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信