Thomas Drury, Juan J Abellan, Nicky Best, Ian R White
{"title":"Estimation of Treatment Policy Estimands for Continuous Outcomes Using Off-Treatment Sequential Multiple Imputation.","authors":"Thomas Drury, Juan J Abellan, Nicky Best, Ian R White","doi":"10.1002/pst.2411","DOIUrl":null,"url":null,"abstract":"<p><p>The estimands framework outlined in ICH E9 (R1) describes the components needed to precisely define the effects to be estimated in clinical trials, which includes how post-baseline 'intercurrent' events (IEs) are to be handled. In late-stage clinical trials, it is common to handle IEs like 'treatment discontinuation' using the treatment policy strategy and target the treatment effect on outcomes regardless of treatment discontinuation. For continuous repeated measures, this type of effect is often estimated using all observed data before and after discontinuation using either a mixed model for repeated measures (MMRM) or multiple imputation (MI) to handle any missing data. In basic form, both these estimation methods ignore treatment discontinuation in the analysis and therefore may be biased if there are differences in patient outcomes after treatment discontinuation compared with patients still assigned to treatment, and missing data being more common for patients who have discontinued treatment. We therefore propose and evaluate a set of MI models that can accommodate differences between outcomes before and after treatment discontinuation. The models are evaluated in the context of planning a Phase 3 trial for a respiratory disease. We show that analyses ignoring treatment discontinuation can introduce substantial bias and can sometimes underestimate variability. We also show that some of the MI models proposed can successfully correct the bias, but inevitably lead to increases in variance. We conclude that some of the proposed MI models are preferable to the traditional analysis ignoring treatment discontinuation, but the precise choice of MI model will likely depend on the trial design, disease of interest and amount of observed and missing data following treatment discontinuation.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2411","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The estimands framework outlined in ICH E9 (R1) describes the components needed to precisely define the effects to be estimated in clinical trials, which includes how post-baseline 'intercurrent' events (IEs) are to be handled. In late-stage clinical trials, it is common to handle IEs like 'treatment discontinuation' using the treatment policy strategy and target the treatment effect on outcomes regardless of treatment discontinuation. For continuous repeated measures, this type of effect is often estimated using all observed data before and after discontinuation using either a mixed model for repeated measures (MMRM) or multiple imputation (MI) to handle any missing data. In basic form, both these estimation methods ignore treatment discontinuation in the analysis and therefore may be biased if there are differences in patient outcomes after treatment discontinuation compared with patients still assigned to treatment, and missing data being more common for patients who have discontinued treatment. We therefore propose and evaluate a set of MI models that can accommodate differences between outcomes before and after treatment discontinuation. The models are evaluated in the context of planning a Phase 3 trial for a respiratory disease. We show that analyses ignoring treatment discontinuation can introduce substantial bias and can sometimes underestimate variability. We also show that some of the MI models proposed can successfully correct the bias, but inevitably lead to increases in variance. We conclude that some of the proposed MI models are preferable to the traditional analysis ignoring treatment discontinuation, but the precise choice of MI model will likely depend on the trial design, disease of interest and amount of observed and missing data following treatment discontinuation.
ICH E9 (R1)中概述的估计因素框架描述了在临床试验中精确定义估计效应所需的组成部分,其中包括如何处理基线后 "并发 "事件(IEs)。在后期临床试验中,通常会使用治疗策略来处理 "治疗中断 "等 IEs,并针对治疗对结果的影响,而不管治疗中断与否。对于连续重复测量,通常使用重复测量混合模型(MMRM)或多重估算(MI)来处理任何缺失数据,并使用终止治疗前后的所有观察数据来估算这类效应。在基本形式上,这两种估算方法在分析中都忽略了治疗的中断,因此,如果患者中断治疗后的结果与仍在接受治疗的患者相比存在差异,而且中断治疗的患者缺失数据更常见,那么这两种方法就可能存在偏差。因此,我们提出并评估了一组 MI 模型,这些模型可以考虑治疗中断前后的结果差异。我们在规划一项呼吸系统疾病的 3 期试验时对这些模型进行了评估。我们发现,忽略治疗中断的分析会带来很大的偏差,有时还会低估变异性。我们还表明,提出的一些多元智能模型可以成功纠正偏差,但不可避免地会导致变异性增加。我们的结论是,一些建议的 MI 模型优于忽略治疗中断的传统分析,但 MI 模型的准确选择可能取决于试验设计、感兴趣的疾病以及治疗中断后的观察数据和缺失数据的数量。
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.