Journal of Pineal Research最新文献

筛选
英文 中文
Novel melatonin-producing Bacillus safensis EH143 mitigates salt and cadmium stress in soybean 新型褪黑素芽孢杆菌 EH143 可减轻大豆的盐和镉胁迫。
IF 10.3 1区 医学
Journal of Pineal Research Pub Date : 2024-05-27 DOI: 10.1111/jpi.12957
Eun-Hae Kwon, Arjun Adhikari, Muhammad Imran, Adil Hussain, Ho-Jun Gam, Ji-In Woo, Jin Ryeol Jeon, Da-Sol Lee, Chung-Yeol Lee, Liny Lay, Sang-Mo Kang, Won-Chan Kim, Byung-Wook Yun, In-Jung Lee
{"title":"Novel melatonin-producing Bacillus safensis EH143 mitigates salt and cadmium stress in soybean","authors":"Eun-Hae Kwon,&nbsp;Arjun Adhikari,&nbsp;Muhammad Imran,&nbsp;Adil Hussain,&nbsp;Ho-Jun Gam,&nbsp;Ji-In Woo,&nbsp;Jin Ryeol Jeon,&nbsp;Da-Sol Lee,&nbsp;Chung-Yeol Lee,&nbsp;Liny Lay,&nbsp;Sang-Mo Kang,&nbsp;Won-Chan Kim,&nbsp;Byung-Wook Yun,&nbsp;In-Jung Lee","doi":"10.1111/jpi.12957","DOIUrl":"10.1111/jpi.12957","url":null,"abstract":"<p>Recently, microorganism and exogenous melatonin application has been recognized as an efficient biological tool for enhancing salt tolerance and heavy metal detoxification in agriculture crops. Thus, the goal of this study was to isolate and evaluate a novel melatonin-producing plant growth promoting bacterium. With high-throughput whole genome sequencing, phytohormone measurements, expression profiling, and biochemical analysis, we can identify a novel PGPB that produces melatonin and unravel how it promotes soybean growth and development and protects against salt and Cd stress. We identify the melatonin synthesis pathway (tryptophan→tryptamine→serotonin melatonin) of the halotolerant (NaCl &gt; 800 mM) and heavy metal-resistant (Cd &gt;3 mM) rhizobacterium <i>Bacillus safensis</i> EH143 and use it to treat soybean plants subjected to Cd and NaCl stresses. Results show that EH143 will highly bioaccumulate heavy metals and significantly improve P and Ca<sup>2+</sup> uptake and the K<sup>+</sup>/Na<sup>+</sup> (93%↑under salt stress) ratio while reducing Cd uptake (49% under Cd stress) in shoots. This activity was supported by the expression of the ion regulator HKT1, MYPB67, and the calcium sensors CDPK5 and CaMK1 which ultimately led to increased plant growth. EH143 significantly decreased ABA content in shoots by 13%, 20%, and 34% and increased SA biosynthesis in shoots by 14.8%, 31%, and 48.2% in control, salt, and Cd-treated plants, upregulating CYP707A1 and CYP707A2 and PAL1 and ICS, respectively. The melatonin content significantly decreased along with a reduced expression of ASMT3 following treatment with EH143; moreover, reduced expression of peroxidase (POD) and superoxide dismutase (SOD) by 134.5% and 39% under salt+Cd stress, respectively and increased level of total amino acids were observed. Whole-genome sequencing and annotation of EH143 revealed the presence of the melatonin precursor tryptophan synthase (trpA, trpB, trpS), metal and other ion regulators (Cd: cadA, potassium: KtrA and KtrB, phosphate: glpT, calcium: yloB, the sodium/glucose cotransporter: sgIT, and the magnesium transporter: mgtE), and enzyme activators (including the siderophore transport proteins yfiZ and yfhA, the SOD sodA, the catalase katA1, and the glutathione regulator KefG) that may be involved in programming the plant metabolic system. As a consequence, EH143 treatment significantly reduced the contents of lipid peroxidation (O<sup>2-</sup>, MDA, and H<sub>2</sub>O<sub>2</sub>) up to 69%, 46%, and 29% in plants under salt+Cd stress, respectively. These findings suggest that EH143 could be a potent biofertilizer to alleviate NaCl and Cd toxicity in crops and serve as an alternative substitute for exogenous melatonin application.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.12957","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARγ/FUNDC1/mitophagy pathways” 更正为 "褪黑素通过 PPARγ/FUNDC1/mitophagy 途径抑制血小板活化和功能,防止心脏缺血/再灌注损伤"。
IF 10.3 1区 医学
Journal of Pineal Research Pub Date : 2024-05-27 DOI: 10.1111/jpi.12947
{"title":"Correction to “Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARγ/FUNDC1/mitophagy pathways”","authors":"","doi":"10.1111/jpi.12947","DOIUrl":"10.1111/jpi.12947","url":null,"abstract":"<p>Zhou H, Li D, Zhu P, et al. Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARγ/FUNDC1/mitophagy pathways. <i>J. Pineal Res</i>. 2017;63:e12438. https://doi.org/10.1111/jpi.12438</p><p>An incorrect version of the Ctrl+IR+GW group was inadvertently included in Figure 2A,I and Figure 4F of the published article. Please find the corrected figures below. It is important to note that these corrections do not affect the conclusions drawn from this study.</p><p>We apologize for this error.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.12947","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circadian light/dark cycle reversal exacerbates the progression of chronic kidney disease in mice 昼夜节律光/暗周期逆转会加剧小鼠慢性肾脏病的进展。
IF 10.3 1区 医学
Journal of Pineal Research Pub Date : 2024-05-27 DOI: 10.1111/jpi.12964
Jiayang Zhang, Lejia Qiu, Zhaiyi Liu, Jiaxin Liu, Bo Yu, Chengcheng Liu, Baoyin Ren, Jiaqi Zhang, Shuyao Li, Youfei Guan, Feng Zheng, Guangrui Yang, Lihong Chen
{"title":"Circadian light/dark cycle reversal exacerbates the progression of chronic kidney disease in mice","authors":"Jiayang Zhang,&nbsp;Lejia Qiu,&nbsp;Zhaiyi Liu,&nbsp;Jiaxin Liu,&nbsp;Bo Yu,&nbsp;Chengcheng Liu,&nbsp;Baoyin Ren,&nbsp;Jiaqi Zhang,&nbsp;Shuyao Li,&nbsp;Youfei Guan,&nbsp;Feng Zheng,&nbsp;Guangrui Yang,&nbsp;Lihong Chen","doi":"10.1111/jpi.12964","DOIUrl":"10.1111/jpi.12964","url":null,"abstract":"<p>Circadian disruption such as shift work, jet lag, has gradually become a global health issue and is closely associated with various metabolic disorders. The influence and mechanism of circadian disruption on renal injury in chronic kidney disease (CKD) remains inadequately understood. Here, we evaluated the impact of environmental light disruption on the progression of chronic renal injury in CKD mice. By using two abnormal light exposure models to induce circadian disruption, we found that circadian disruption induced by weekly light/dark cycle reversal (LDDL) significantly exacerbated renal dysfunction, accelerated renal injury, and promoted renal fibrosis in mice with 5/6 nephrectomy and unilateral ureteral obstruction (UUO). Mechanistically, RNA-seq analysis revealed significant immune and metabolic disorder in the LDDL-conditioned CKD kidneys. Consistently, renal content of ATP was decreased and ROS production was increased in the kidney tissues of the LDDL-challenged CKD mice. Untargeted metabolomics revealed a significant buildup of lipids in the kidney affected by LDDL. Notably, the level of β-NMN, a crucial intermediate in the NAD<sup>+</sup> pathway, was found to be particularly reduced. Moreover, we demonstrated that both β-NMN and melatonin administration could significantly rescue the light-disruption associated kidney dysfunction. In conclusion, environmental circadian disruption may exacerbate chronic kidney injury by facilitating inflammatory responses and disturbing metabolic homeostasis. β-NMN and melatonin treatments may hold potential as promising approaches for preventing and treating light-disruption associated CKD.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin restores hepatic lipid metabolic homeostasis disrupted by blue light at night in high-fat diet-fed mice 褪黑素可恢复高脂饮食小鼠夜间被蓝光破坏的肝脏脂质代谢平衡。
IF 10.3 1区 医学
Journal of Pineal Research Pub Date : 2024-05-23 DOI: 10.1111/jpi.12963
Qingyun Guan, Zixu Wang, Jing Cao, Yulan Dong, Shusheng Tang, Yaoxing Chen
{"title":"Melatonin restores hepatic lipid metabolic homeostasis disrupted by blue light at night in high-fat diet-fed mice","authors":"Qingyun Guan,&nbsp;Zixu Wang,&nbsp;Jing Cao,&nbsp;Yulan Dong,&nbsp;Shusheng Tang,&nbsp;Yaoxing Chen","doi":"10.1111/jpi.12963","DOIUrl":"10.1111/jpi.12963","url":null,"abstract":"<p>Artificial light at night (ALAN) is an emerging environmental pollutant that threatens public health. Recently, ALAN has been identified as a risk factor for obesity; however, the role of ALAN and its light wavelength in hepatic lipid metabolic homeostasis remains undetermined. We showed that chronic dim (~5 lx) ALAN (dLAN) exposure significantly promoted hepatic lipid accumulation in obese or diabetic mice, with the most severe effect of blue light and little effect of green or red light. These metabolic phenotypes were attributed to blue rather than green or red dLAN interfering with hepatic lipid metabolism, especially lipogenesis and lipolysis. Further studies found that blue dLAN disrupted hepatic lipogenesis and lipolysis processes by inhibiting hepatic REV-ERBs. Mechanistically, feeding behavior mediated the regulation of dLAN on hepatic REV-ERBs. In addition, different effects of light wavelengths at night on liver REV-ERBs depended on the activation of the corticosterone (CORT)/glucocorticoid receptor (GR) axis. Blue dLAN could activate the CORT/GR axis significantly while other wavelengths could not. Notably, we demonstrated that exogenous melatonin could effectively inhibit hepatic lipid accumulation and restore the hepatic GR/REV-ERBs axis disrupted by blue dLAN. These findings demonstrate that dLAN promotes hepatic lipid accumulation in mice via a short-wavelength-dependent manner, and exogenous melatonin is a potential therapeutic approach. This study strengthens the relationship between ALAN and hepatic lipid metabolism and provides insights into directing ambient light.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin reduces brain injury following inflammation-amplified hypoxia–ischemia in a translational newborn piglet study of neonatal encephalopathy 在一项新生儿脑病转化研究中,褪黑素能减轻炎症加重缺氧缺血后的脑损伤。
IF 10.3 1区 医学
Journal of Pineal Research Pub Date : 2024-05-22 DOI: 10.1111/jpi.12962
Raymand Pang, Christopher Meehan, George Maple, Georgina Norris, Ellie Campbell, Katie Tucker, Alison Mintoft, Francisco Torrealdea, Alan Bainbridge, Mariya Hristova, John Barks, Xavier Golay, Joseph Standing, Nicola J. Robertson
{"title":"Melatonin reduces brain injury following inflammation-amplified hypoxia–ischemia in a translational newborn piglet study of neonatal encephalopathy","authors":"Raymand Pang,&nbsp;Christopher Meehan,&nbsp;George Maple,&nbsp;Georgina Norris,&nbsp;Ellie Campbell,&nbsp;Katie Tucker,&nbsp;Alison Mintoft,&nbsp;Francisco Torrealdea,&nbsp;Alan Bainbridge,&nbsp;Mariya Hristova,&nbsp;John Barks,&nbsp;Xavier Golay,&nbsp;Joseph Standing,&nbsp;Nicola J. Robertson","doi":"10.1111/jpi.12962","DOIUrl":"10.1111/jpi.12962","url":null,"abstract":"<p>There is a need to develop therapies for neonatal encephalopathy (NE) in low- and middle-income countries (LMICs) where the burden of disease is greatest and therapeutic hypothermia (HT) is not effective. We aimed to assess the efficacy of melatonin following inflammation-amplified hypoxia–ischaemia (IA-HI) in the newborn piglet. The IA-HI model accounts for the contribution of infection/inflammation in this setting and HT is not cytoprotective. We hypothesised that intravenous melatonin (5% ethanol, at 20 mg/kg over 2 h at 1 h after HI + 10 mg/kg/12 h between 24 and 60 h) is safe and associated with: (i) reduction in magnetic resonance spectroscopy lactate/<i>N</i>-acetylaspartate (MRS Lac/sNAA); (ii) preservation of phosphorus MRS phosphocreatine/phosphate exchange pool (PCr/Epp); (iii) improved aEEG/EEG recovery and (iv) cytoprotection on immunohistochemistry. Male and female piglets underwent IA-HI by carotid artery occlusion and reduction in FiO<sub>2</sub> to 6% at 4 h into <i>Escherichia coli</i> lipopolysaccharide sensitisation (2 μg/kg bolus + 1 μg/kg/h over 12 h). At 1 h after IA-HI, piglets were randomised to HI-saline (<i>n</i> = 12) or melatonin (<i>n</i> = 11). There were no differences in insult severity between groups. Target melatonin levels (15–30 mg/L) were achieved within 3 h and blood ethanol levels were &lt;0.25 g/L. At 60 h, compared to HI-saline, melatonin was associated with a reduction of 0.197 log<sub>10</sub> units (95% CrI [−0.366, −0.028], Pr<sub>(sup)</sub> 98.8%) in basal-ganglia and thalamic Lac/NAA, and 0.257 (95% CrI [−0.676, 0.164], Pr<sub>(sup)</sub> 89.3%) in white matter Lac/NAA. PCr/Epp was higher in melatonin versus HI-saline (Pr<sub>(sup)</sub> 97.6%). Melatonin was associated with earlier aEEG/EEG recovery from 19 to 24 h (Pr<sub>(sup)</sub> 95.4%). Compared to HI-saline, melatonin was associated with increased NeuN+ cell density (Pr<sub>(sup)</sub> 99.3%) across five of eight regions and reduction in TUNEL-positive cell death (Pr<sub>(sup)</sub> 89.7%). This study supports the translation of melatonin to early-phase clinical trials. Melatonin is protective following IA-HI where HT is not effective. These data guide the design of future dose-escalation studies in the next phase of the translational pipeline.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.12962","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141074923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin in energy control: Circadian time-giver and homeostatic monitor 能量控制中的褪黑激素:昼夜节律时间提供者和平衡监测器。
IF 10.3 1区 医学
Journal of Pineal Research Pub Date : 2024-05-15 DOI: 10.1111/jpi.12961
Etienne Challet, Paul Pévet
{"title":"Melatonin in energy control: Circadian time-giver and homeostatic monitor","authors":"Etienne Challet,&nbsp;Paul Pévet","doi":"10.1111/jpi.12961","DOIUrl":"10.1111/jpi.12961","url":null,"abstract":"<p>Melatonin is a neurohormone synthesized from dietary tryptophan in various organs, including the pineal gland and the retina. In the pineal gland, melatonin is produced at night under the control of the master clock located in the suprachiasmatic nuclei of the hypothalamus. Under physiological conditions, the pineal gland seems to constitute the unique source of circulating melatonin. Melatonin is involved in cellular metabolism in different ways. First, the circadian rhythm of melatonin helps the maintenance of proper internal timing, the disruption of which has deleterious effects on metabolic health. Second, melatonin modulates lipid metabolism, notably through diminished lipogenesis, and it has an antidiabetic effect, at least in several animal models. Third, pharmacological doses of melatonin have antioxidative, free radical-scavenging, and anti-inflammatory properties in various in vitro cellular models. As a result, melatonin can be considered both a circadian time-giver and a homeostatic monitor of cellular metabolism, via multiple mechanisms of action that are not all fully characterized. Aging, circadian disruption, and artificial light at night are conditions combining increased metabolic risks with diminished circulating levels of melatonin. Accordingly, melatonin supplementation could be of potential therapeutic value in the treatment or prevention of metabolic disorders. More clinical trials in controlled conditions are needed, notably taking greater account of circadian rhythmicity.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.12961","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140943489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin alleviates myocardial dysfunction through inhibition of endothelial-to-mesenchymal transition via the NF-κB pathway 褪黑素通过NF-κB途径抑制内皮细胞向间质转化,从而缓解心肌功能障碍。
IF 10.3 1区 医学
Journal of Pineal Research Pub Date : 2024-05-15 DOI: 10.1111/jpi.12958
Ran Kim, Minsuk Kim, Seongtae Jeong, Sejin Kim, Hanbyeol Moon, Hojin Kim, Min Young Lee, Jongmin Kim, Hyung-Sik Kim, Murim Choi, Kunyoo Shin, Byeong-Wook Song, Woochul Chang
{"title":"Melatonin alleviates myocardial dysfunction through inhibition of endothelial-to-mesenchymal transition via the NF-κB pathway","authors":"Ran Kim,&nbsp;Minsuk Kim,&nbsp;Seongtae Jeong,&nbsp;Sejin Kim,&nbsp;Hanbyeol Moon,&nbsp;Hojin Kim,&nbsp;Min Young Lee,&nbsp;Jongmin Kim,&nbsp;Hyung-Sik Kim,&nbsp;Murim Choi,&nbsp;Kunyoo Shin,&nbsp;Byeong-Wook Song,&nbsp;Woochul Chang","doi":"10.1111/jpi.12958","DOIUrl":"10.1111/jpi.12958","url":null,"abstract":"<p>Endothelial-to-mesenchymal transition (EndMT) is a complex biological process of cellular transdifferentiation by which endothelial cells (ECs) lose their characteristics and acquire mesenchymal properties, leading to cardiovascular remodeling and complications in the adult cardiovascular diseases environment. Melatonin is involved in numerous physiological and pathological processes, including aging, and has anti-inflammatory and antioxidant activities. This molecule is an effective therapeutic candidate for preventing oxidative stress, regulating endothelial function, and maintaining the EndMT balance to provide cardiovascular protection. Although recent studies have documented improved cardiac function by melatonin, the mechanism of action of melatonin on EndMT remains unclear. The present study investigated the effects of melatonin on induced EndMT by transforming growth factor-β2/interleukin-1β in both in vivo and in vitro models. The results revealed that melatonin reduced the migratory ability and reactive oxygen species levels of the cells and ameliorated mitochondrial dysfunction in vitro. Our findings indicate that melatonin prevents endothelial dysfunction and inhibits EndMT by activating related pathways, including nuclear factor kappa B and Smad. We also demonstrated that this molecule plays a crucial role in restoring cardiac function by regulating the EndMT process in the ischemic myocardial condition, both in vessel organoids and myocardial infarction (MI) animal models. In conclusion, melatonin is a promising agent that attenuates EC dysfunction and ameliorates cardiac damage compromising the EndMT process after MI.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.12958","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140920848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational modification of melatonin for broad-spectrum antifungal agents discovery 合理改造褪黑素以发现广谱抗真菌剂。
IF 10.3 1区 医学
Journal of Pineal Research Pub Date : 2024-05-15 DOI: 10.1111/jpi.12960
Huanyu Cai, Renjian Li, Yu Chen, Ruiqing Bi, Xueru Fang, Peng Wu, Weilong Xu, Longzhu Bao, Zhu Liu, Jun Li, Guotian Li, Huailong Teng
{"title":"Rational modification of melatonin for broad-spectrum antifungal agents discovery","authors":"Huanyu Cai,&nbsp;Renjian Li,&nbsp;Yu Chen,&nbsp;Ruiqing Bi,&nbsp;Xueru Fang,&nbsp;Peng Wu,&nbsp;Weilong Xu,&nbsp;Longzhu Bao,&nbsp;Zhu Liu,&nbsp;Jun Li,&nbsp;Guotian Li,&nbsp;Huailong Teng","doi":"10.1111/jpi.12960","DOIUrl":"10.1111/jpi.12960","url":null,"abstract":"<p>Natural products, known for their environmental safety, are regarded as a significant basis for the modification and advancement of fungicides. Melatonin, as a low-cost natural indole, exhibits diverse biological functions, including antifungal activity. However, its potential as an antifungal agent has not been fully explored. In this study, a series of melatonin derivatives targeting the mitogen-activated protein kinase (Mps1) protein of fungal pathogens were synthesized based on properties of melatonin, among which the trifluoromethyl-substituted derivative Mt-23 exhibited antifungal activity against seven plant pathogenic fungi, and effectively reduced the severity of crop diseases, including rice blast, Fusarium head blight of wheat and gray mold of tomato. In particular, its EC<sub>50</sub> (5.4 µM) against the rice blast fungus <i>Magnaporthe oryzae</i> is only one-fourth that of isoprothiolane (22 µM), a commercial fungicide. Comparative analyzes revealed that Mt-23 simultaneously targets the conserved protein kinase Mps1 and lipid protein Cap20. Surface plasmon resonance assays showed that Mt-23 directly binds to Mps1 and Cap20. In this study, we provide a strategy for developing antifungal agents by modifying melatonin, and the resultant melatonin derivative Mt-23 is a commercially valuable, eco-friendly and broad-spectrum antifungal agent to combat crop disease.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140920159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin ameliorates 10-hydroxycamptothecin-induced oxidative stress and apoptosis via autophagy-regulated p62/Keap1/Nrf2 pathway in mouse testicular cells 褪黑素通过自噬调节的p62/Keap1/Nrf2途径改善小鼠睾丸细胞中10-羟基喜树碱诱导的氧化应激和细胞凋亡。
IF 10.3 1区 医学
Journal of Pineal Research Pub Date : 2024-05-13 DOI: 10.1111/jpi.12959
Jinmei Cheng, Junjie Xu, Yimin Gu, Yueming Wang, Jianyu Wang, Fei Sun
{"title":"Melatonin ameliorates 10-hydroxycamptothecin-induced oxidative stress and apoptosis via autophagy-regulated p62/Keap1/Nrf2 pathway in mouse testicular cells","authors":"Jinmei Cheng,&nbsp;Junjie Xu,&nbsp;Yimin Gu,&nbsp;Yueming Wang,&nbsp;Jianyu Wang,&nbsp;Fei Sun","doi":"10.1111/jpi.12959","DOIUrl":"10.1111/jpi.12959","url":null,"abstract":"<p>10-Hydroxycamptothecin (HCPT) is a widely used clinical anticancer drug but has a significant side effect profile. Melatonin has a beneficial impact on the chemotherapy of different cancer cells and reproductive processes, but the effect and underlying molecular mechanism of melatonin's involvement in the HCPT-induced side effects in cells, especially in the testicular cells, are poorly understood. In this study, we found that melatonin therapy significantly restored HCPT-induced testicular cell damage and did not affect the antitumor effect of HCPT. Further analysis found that melatonin therapy suppressed HCPT-induced DNA damage associated with ataxia-telangiectasia mutated- and Rad3-related and CHK1 phosphorylation levels in the testis. Changes in apoptosis-associated protein levels (Bax, Bcl-2, p53, and Cleaved caspase-3) and in reactive oxygen species-associated proteins (Nrf2 and Keap1) and index (malondialdehyde and glutathione) suggested that melatonin treatment relieved HCPT-induced cell apoptosis and oxidative damage, respectively. Mechanistically, melatonin-activated autophagy proteins (ATG7, Beclin1, and LC3bII/I) may induce p62-dependent autophagy to degrade Keap1, eliciting Nrf2 from Keap1-Nrf2 interaction to promote antioxidant enzyme expression such as HO-1, which would salvage HCPT-induced ROS production and mitochondrial dysfunction. Collectively, this study reveals that melatonin therapy may protect testicular cells from HCPT-induced damage via the activation of autophagy, which alleviates oxidative stress, mitochondrial dysfunction, and cell apoptosis.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circadian desynchrony and glucose metabolism 昼夜节律不同步与葡萄糖代谢
IF 10.3 1区 医学
Journal of Pineal Research Pub Date : 2024-05-02 DOI: 10.1111/jpi.12956
Esther M. Speksnijder, Peter H. Bisschop, Sarah E. Siegelaar, Dirk Jan Stenvers, Andries Kalsbeek
{"title":"Circadian desynchrony and glucose metabolism","authors":"Esther M. Speksnijder,&nbsp;Peter H. Bisschop,&nbsp;Sarah E. Siegelaar,&nbsp;Dirk Jan Stenvers,&nbsp;Andries Kalsbeek","doi":"10.1111/jpi.12956","DOIUrl":"https://doi.org/10.1111/jpi.12956","url":null,"abstract":"<p>The circadian timing system controls glucose metabolism in a time-of-day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24-h are generated by the transcriptional-translational feedback loops of a set of core clock genes. Glucose homeostasis is one of the daily rhythms controlled by this circadian timing system. The central pacemaker in the SCN controls glucose homeostasis through its neural projections to hypothalamic hubs that are in control of feeding behavior and energy metabolism. Using hormones such as adrenal glucocorticoids and melatonin and the autonomic nervous system, the SCN modulates critical processes such as glucose production and insulin sensitivity. Peripheral clocks in tissues, such as the liver, muscle, and adipose tissue serve to enhance and sustain these SCN signals. In the optimal situation all these clocks are synchronized and aligned with behavior and the environmental light/dark cycle. A negative impact on glucose metabolism becomes apparent when the internal timing system becomes disturbed, also known as circadian desynchrony or circadian misalignment. Circadian desynchrony may occur at several levels, as the mistiming of light exposure or sleep will especially affect the central clock, whereas mistiming of food intake or physical activity will especially involve the peripheral clocks. In this review, we will summarize the literature investigating the impact of circadian desynchrony on glucose metabolism and how it may result in the development of insulin resistance. In addition, we will discuss potential strategies aimed at reinstating circadian synchrony to improve insulin sensitivity and contribute to the prevention of type 2 diabetes.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 4","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.12956","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140818980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信