{"title":"Gauge and unitary transformations in multipolar quantum optics.","authors":"Mohamed Babiker","doi":"10.1098/rsta.2023.0330","DOIUrl":"10.1098/rsta.2023.0330","url":null,"abstract":"<p><p>Multipolar quantum optics deals with the interaction of light with matter as a many-body bound system of charged particles where the coupling to electromagnetic fields is in terms of the multipolar electric polarization and magnetization. We describe two transformations applied to the conventional non-relativistic formalism, namely a gauge transformation applied directly to the fields at the Lagrangian stage and a unitary transformation applied to the old Hamiltonian. We show how such transformations lead to the same Power-Zienau-Woolley (PZW) formulation of the quantum electrodynamics (QED) of an overall electrically neutral many-body bound system of charges, including the internal motion as well as the gross dynamics of the centre of mass. Besides highlighting the utility of the multipolar formalism as a reliable and convenient platform in dealing with optical processes in atomic and molecular physics, it is shown how the analysis can also lead to the identification of the Röntgen effect arising from the gross motion of an electric dipole moment in a magnetic field and the Aharonov-Casher effect due to the motion of a magnetic dipole moment in an electric field. The importance of the two effects is pointed out in both experimental and theoretical contexts.This article is part of the theme issue 'The quantum theory of light'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2287","pages":"20230330"},"PeriodicalIF":4.3,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667583/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Limitations in quantum metrology approaches to imaging resolution.","authors":"S Iqbal, Y Xu, R W Boyd","doi":"10.1098/rsta.2023.0332","DOIUrl":"https://doi.org/10.1098/rsta.2023.0332","url":null,"abstract":"<p><p>Can a quantum advantage for imaging resolution be realized with the help of quantum estimation theory? We expect so, but we show that, presently, theoretical tools are insufficiently developed to answer this question for extended objects. Still, there is much to be learned from the current state of the art. In this review, we re-examine prominent results in the literature and probe the limits of quantum metrology in addressing imaging resolution. In particular, we show that under restrictive but well-defined conditions, any quantum advantage in one-dimensional phase imaging appears to diminish for increasingly detailed objects. We also show that a previous attempt at tackling this question, while incomplete, does predict an advantage for single-molecule localization microscopy, although this method may not be feasible in the near term. As for experimental claims of Heisenberg-limited imaging resolution, we briefly address the many inherent difficulties in demonstrating that such a thing has indeed been achieved.This article is part of the theme issue 'The quantum theory of light'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2287","pages":"20230332"},"PeriodicalIF":4.3,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum optical phase, rigged Hilbert spaces and complementarity.","authors":"Khai Bordon, Joan A Vaccaro","doi":"10.1098/rsta.2023.0328","DOIUrl":"10.1098/rsta.2023.0328","url":null,"abstract":"<p><p>We place Loudon's quantum treatment of optical phase in <i>The quantum theory of light</i> in its historical context, and outline research that it inspired. We show how it led Pegg and Barnett to their quantum phase formalism, explaining the challenges that they overcame to define phase operators and phase eigenstates rigorously. We show how the formalism essentially constructs an extended rigged Hilbert space that supports strong limits of the phase operators and includes their eigenstates. We identify the complementarity structure (consisting of mutually unbiased bases and generators of cyclical permutations) underpinning Pegg and Barnett's general approach that gives a quantum-classical correspondence free of the ambiguity of Dirac's commutator-Poisson bracket correspondence.This article is part of the theme issue 'The quantum theory of light'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2287","pages":"20230328"},"PeriodicalIF":4.3,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theory and application of cavity solitons in photonic devices.","authors":"Gian-Luca Oppo, William J Firth","doi":"10.1098/rsta.2023.0336","DOIUrl":"10.1098/rsta.2023.0336","url":null,"abstract":"<p><p>Driven optical cavities containing a nonlinear medium support stable dissipative solitons, cavity solitons, in the form of bright or dark spots of light on a uniformly-lit background. Broadening effects due to diffraction or group velocity dispersion are balanced by the nonlinear interaction with the medium while cavity losses balance the input energy. The history, properties, physical interpretation and wide application of cavity solitons are reviewed. Cavity solitons in the plane perpendicular to light propagation find application in optical information processing, while cavity solitons in the longitudinal direction produce high-quality frequency combs with applications in optical communications, frequency standards, optical clocks, future GPS, astronomy and quantum technologies.This article is part of the theme issue 'The quantum theory of light'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2287","pages":"20230336"},"PeriodicalIF":4.3,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667589/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generalizing multipartite concentratable entanglement for practical applications: mixed, qudit and optical states.","authors":"Steph Foulds, Oliver Prove, Viv Kendon","doi":"10.1098/rsta.2024.0411","DOIUrl":"10.1098/rsta.2024.0411","url":null,"abstract":"<p><p>The controlled SWAP test for detecting and quantifying entanglement applied to pure qubit states is robust to small errors in the states and efficient for large multi-qubit states (Foulds <i>et al</i>. 2021 <i>Quantum Sci. Technol</i>. <b>6</b>, 035002 (doi:10.1088/2058-9565/abe458)). We extend this, and the related measure <i>concentratable entanglement</i> (CE), to enable important practical applications in quantum information processing. We investigate the lower bound of concentratable entanglement given in (Beckey <i>et al</i>. 2023 <i>Phys. Rev. A</i> <b>107</b>, 062425 (doi:10.1103/physreva.107.062425)) and conjecture an upper bound of the mixed-state concentratable entanglement that is robust to c-SWAP test errors. Since experimental states are always slightly mixed, our work makes the c-SWAP test and CE measure suitable for application in experiments to characterize entanglement. We further present the CE of some key higher-dimensional states such as qudit states and entangled optical states to validate the CE as a higher-dimensional measure of entanglement.This article is part of the theme issue 'The quantum theory of light'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2287","pages":"20240411"},"PeriodicalIF":4.3,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667588/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum retrodiction.","authors":"John Jeffers, Daniel K L Oi, Thomas Brougham","doi":"10.1098/rsta.2023.0338","DOIUrl":"10.1098/rsta.2023.0338","url":null,"abstract":"<p><p>Quantum retrodiction, in which the state of a quantum system prior to a measurement is assigned based on the results of that measurement, has had a long history and has been used in quantum optics research for decades. Here we summarize the theory and point out some of the more interesting results, before applying the theory to state identification from multiple shots of an experiment. One surprising result is that we show that a photodetector with low quantum efficiency can discriminate between photonic states better than a detector with a higher efficiency.This article is part of the theme issue 'The quantum theory of light'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2287","pages":"20230338"},"PeriodicalIF":4.3,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mojdeh Shikhali Najafabadi, Luis L Sanchez-Soto, Kun Huang, Julien Laurat, Hanna Le Jeannic, Gerd Leuchs
{"title":"Intensity correlations in the Wigner representation.","authors":"Mojdeh Shikhali Najafabadi, Luis L Sanchez-Soto, Kun Huang, Julien Laurat, Hanna Le Jeannic, Gerd Leuchs","doi":"10.1098/rsta.2023.0337","DOIUrl":"10.1098/rsta.2023.0337","url":null,"abstract":"<p><p>We derive a compact expression for the second-order correlation function [Formula: see text] of a quantum state in terms of its Wigner function, thereby establishing a direct link between [Formula: see text] and the state's shape in phase space. We conduct an experiment that simultaneously measures [Formula: see text] through direct photocounting and reconstructs the Wigner function via homodyne tomography. The results confirm our theoretical predictions.This article is part of the theme issue 'The quantum theory of light'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2287","pages":"20230337"},"PeriodicalIF":4.3,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sir Rudolf Peierls and radiation pressure.","authors":"C Baxter","doi":"10.1098/rsta.2024.0019","DOIUrl":"https://doi.org/10.1098/rsta.2024.0019","url":null,"abstract":"<p><p>Towards the end of his life, Rudolf Peierls became interested in photon momentum and radiation pressure. He subsequently published a number of theoretical papers on the subject. Although the work of Peierls has neither been widely adopted nor developed, it did nevertheless have a provoking and fruitful effect on the radiation pressure research undertaken by Alan Gibson and Rodney Loudon at the University of Essex.This article is part of the theme issue, 'The quantum theory of light'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2287","pages":"20240019"},"PeriodicalIF":4.3,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The quantum optics of media.","authors":"Stephen M Barnett","doi":"10.1098/rsta.2023.0339","DOIUrl":"10.1098/rsta.2023.0339","url":null,"abstract":"<p><p>The quantum theory of light in real media requires attention to a number of physical features. Even in near-transparent dielectrics, we have to incorporate dispersion, losses and the effects of interfaces. Here, we review the quantization of light in a dielectric and see how this affects radiative processes and light propagation. In the second half of the paper, we turn to optical forces and momentum. There we show why there are two rival force densities in a medium and also why there <i>must be</i> two distinct optical momenta. In the process, this resolves the century-old Abraham-Minkowski dilemma.This article is part of the theme issue 'The quantum theory of light'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2287","pages":"20230339"},"PeriodicalIF":4.3,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667586/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unified space-time description of pulsed twin beams.","authors":"Alessandra Gatti, Enrico Brambilla, Ottavia Jedrkiewicz","doi":"10.1098/rsta.2023.0334","DOIUrl":"https://doi.org/10.1098/rsta.2023.0334","url":null,"abstract":"<p><p>This work provides a mathematical derivation of a quasi-stationary (QS) model for multimode parametric down-conversion (PDC), which was presented in Gatti <i>et al</i>. (Gatti <i>et al</i>., <i>Sci. Rep</i>. <b>13</b>, 16786) with heuristic arguments. Here, the model is derived from the 3D + 1 propagation equation of the quantum fields in a nonlinear crystal, and its approximations are discussed thoroughly. Thanks to its relative simplicity, and to the fact that it is valid in any gain regime, both at a quantum and classical level, it allows a unified description of disparate experimental observations conducted over the last 20 years, often described in the past by means of limited ad hoc models.This article is part of the theme issue 'The quantum theory of light'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2287","pages":"20230334"},"PeriodicalIF":4.3,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}