Peptide Science最新文献

筛选
英文 中文
Issue Information 问题信息
IF 2.4 4区 生物学
Peptide Science Pub Date : 2023-07-01 DOI: 10.1002/pep2.24278
{"title":"Issue Information","authors":"","doi":"10.1002/pep2.24278","DOIUrl":"https://doi.org/10.1002/pep2.24278","url":null,"abstract":"","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42598019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Convergent Hybrid Phase Ligation for Efficient and Convenient Total Synthesis of Proteins. 开发用于高效便捷地全合成蛋白质的聚合混合相连接技术。
IF 1.5 4区 生物学
Peptide Science Pub Date : 2023-07-01 Epub Date: 2023-05-25 DOI: 10.1002/pep2.24323
Ziyong Z Hong, Ruixuan R Yu, Xiaoyu Zhang, Allison M Webb, Nathaniel L Burge, Michael G Poirier, Jennifer J Ottesen
{"title":"Development of Convergent Hybrid Phase Ligation for Efficient and Convenient Total Synthesis of Proteins.","authors":"Ziyong Z Hong, Ruixuan R Yu, Xiaoyu Zhang, Allison M Webb, Nathaniel L Burge, Michael G Poirier, Jennifer J Ottesen","doi":"10.1002/pep2.24323","DOIUrl":"10.1002/pep2.24323","url":null,"abstract":"<p><p>Simple and efficient total synthesis of homogeneous and chemically modified protein samples remains a significant challenge. Here, we report development of a convergent hybrid phase native chemical ligation (CHP-NCL) strategy for facile preparation of proteins. In this strategy, proteins are split into ~100-residue blocks, and each block is assembled on solid support from synthetically accessible peptide fragments before ligated together into full-length protein in solution. With the new method, we increase the yield of CENP-A synthesis by 2.5-fold compared to the previous hybrid phase ligation approach. We further extend the new strategy to the total chemical synthesis of 212-residue linker histone H1.2 in unmodified, phosphorylated, and citrullinated forms, each from eight peptide segments with only one single purification. We demonstrate that fully synthetic H1.2 replicates the binding interactions of linker histones to intact mononucleosomes, as a proxy for the essential function of linker histones in the formation and regulation of higher order chromatin structure.</p>","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":"115 4","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488053/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10605700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled aggregation properties of threonine modified by protecting groups to unusual self‐assembled structures 保护基修饰苏氨酸的可控聚集特性
IF 2.4 4区 生物学
Peptide Science Pub Date : 2023-06-22 DOI: 10.1002/pep2.24324
Nidhi Gour, Vivekshinh Kshtriya, B. Koshti, Monisha Patel, D. Boukhvalov
{"title":"Controlled aggregation properties of threonine modified by protecting groups to unusual self‐assembled structures","authors":"Nidhi Gour, Vivekshinh Kshtriya, B. Koshti, Monisha Patel, D. Boukhvalov","doi":"10.1002/pep2.24324","DOIUrl":"https://doi.org/10.1002/pep2.24324","url":null,"abstract":"We report for the very first time the controlled structural changes in the self‐assemblies of N‐(9‐fluorenylmethoxycarbonyl)‐O‐tert‐butyl‐l‐threonine (Fmoc‐Thr(tBu)‐OH) (FTU) to well defined unique morphologies. The self‐assembling properties of FTU were very interesting and intriguing as it resulted in the formation of unusual structures which resembles fibrous dumbbells and double‐sided broomstick‐like morphologies along with conventional spheres and rods under controlled conditions of concentration and temperature. The self‐assembly of other derivatives of threonine as well as another hydroxyl containing amino acid with same modification that is, ((N‐(9H‐fluoren‐9‐yl)methoxy)carbonyl)‐O‐(tert‐butyl)‐l‐serine (Fmoc‐Ser(tBu)‐OH) (FSU) was also studied to understand the crucial role of –Fmoc, ‐tBu and an additional –CH3 group present in the structure of FTU in the process of self‐assembly. Solvent dependent morphological studies of FTU and FSU suggest important role of solubility parameters and crystallization in formation of these unusual structures. The control experiments of co‐incubation with tannic acid and urea and solution state 1H‐NMR studies elucidate π–π stacking interactions as the key driving force for the structure formation. Further, the interactions which can occur between pairs of FTU and FSU which cause initial self‐assembly was studied theoretically via computational modeling. These studies suggest pair of FTU can either interact via head‐to‐head (HH) or head‐to‐tail (HT) configurations and the most favorable probabilities of either of these interactions lead to morphological transitions in FTU self‐assembly under varying conditions. The studies reported herein hence demonstrate that bioorganic molecules like protected single amino acids can be efficiently used as scaffold for self‐assembly and provide a very simple and facile bottom‐up‐approach for the design of uncommon novel micro/nanoarchitects for multifarious applications.","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45164817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information 问题信息
IF 2.4 4区 生物学
Peptide Science Pub Date : 2023-05-01 DOI: 10.1111/nous.12413
{"title":"Issue Information","authors":"","doi":"10.1111/nous.12413","DOIUrl":"https://doi.org/10.1111/nous.12413","url":null,"abstract":"","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41415603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomole‐scale photochemical thiol‐ene chemistry for high‐throughput late‐stage diversification of peptide macrocycles 纳米级光化学硫醇烯化学用于肽大环的高通量后期多样化
IF 2.4 4区 生物学
Peptide Science Pub Date : 2023-04-26 DOI: 10.1002/pep2.24310
M. Nolan, M. Schüttel, Eoin M. Scanlan, Alexander L. Nielsen
{"title":"Nanomole‐scale photochemical thiol‐ene chemistry for high‐throughput late‐stage diversification of peptide macrocycles","authors":"M. Nolan, M. Schüttel, Eoin M. Scanlan, Alexander L. Nielsen","doi":"10.1002/pep2.24310","DOIUrl":"https://doi.org/10.1002/pep2.24310","url":null,"abstract":"","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43602843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum: Current peptide vaccine and immunotherapy approaches against Alzheimer's disease 勘误表:目前针对阿尔茨海默病的肽疫苗和免疫疗法方法
IF 2.4 4区 生物学
Peptide Science Pub Date : 2023-04-19 DOI: 10.1002/pep2.24309
{"title":"Erratum: Current peptide vaccine and immunotherapy approaches against Alzheimer's disease","authors":"","doi":"10.1002/pep2.24309","DOIUrl":"https://doi.org/10.1002/pep2.24309","url":null,"abstract":"In the published article cited above, there was an error at the start of paragraph five, section two, β-Amyloid peptide vaccines where ACI-24 is introduced: the company behind ACI-24 was mis-attributed. The first sentence of the paragraph originally read: ACI-24 (AC Immune, Roche and Genentech) is designed to avoid eliciting a Th-1 response to Aβ. The sentence should read: ACI-24 (AC Immune) is designed to avoid eliciting a Th-1 response to Aβ. There was also an error at the start of paragraph six, section two, β-Amyloid peptide vaccines where ABvac40 is introduced: the company behind ABvac40 was mis-attributed. The first sentence of the paragraph originally read: ABvac40 (Axon Neuroscience SE) is designed to target the C-terminus of Aβ1–40. The sentence should read: ABvac40 (Araclon Biotech) is designed to target the C-terminus of Aβ1–40. The authors apologise for any inconvenience this may have caused. DOI: 10.1002/pep2.24309","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44061825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane permeability and antimicrobial peptides: Much more than just making a hole 膜渗透性和抗菌肽:不仅仅是打一个洞
IF 2.4 4区 生物学
Peptide Science Pub Date : 2023-03-31 DOI: 10.1002/pep2.24305
J. C. Espeche, Romina Varas, P. Maturana, A. Cutró, P. Maffía, A. Hollmann
{"title":"Membrane permeability and antimicrobial peptides: Much more than just making a hole","authors":"J. C. Espeche, Romina Varas, P. Maturana, A. Cutró, P. Maffía, A. Hollmann","doi":"10.1002/pep2.24305","DOIUrl":"https://doi.org/10.1002/pep2.24305","url":null,"abstract":"","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45367084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Host defense peptides identified in human apolipoprotein B as natural food bio‐preservatives: Evaluation of their biosafety and digestibility 人载脂蛋白B中鉴定的宿主防御肽作为天然食品生物防腐剂:生物安全性和消化率评估
IF 2.4 4区 生物学
Peptide Science Pub Date : 2023-03-29 DOI: 10.1002/pep2.24308
Eliana Dell’Olmo, Katia Pane, Martina Schibeci, Angela Cesaro, Maria G De Luca, Shurooq Ismail, R. Gaglione, Angela Arciello
{"title":"Host defense peptides identified in human apolipoprotein B as natural food bio‐preservatives: Evaluation of their biosafety and digestibility","authors":"Eliana Dell’Olmo, Katia Pane, Martina Schibeci, Angela Cesaro, Maria G De Luca, Shurooq Ismail, R. Gaglione, Angela Arciello","doi":"10.1002/pep2.24308","DOIUrl":"https://doi.org/10.1002/pep2.24308","url":null,"abstract":"","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48698764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine‐tuning the antimicrobial activity of β‐hairpin peptides with fluorinated amino acids 用氟化氨基酸微调β -发夹肽的抗菌活性
IF 2.4 4区 生物学
Peptide Science Pub Date : 2023-03-08 DOI: 10.1002/pep2.24306
S. Chowdhary, Tim Pelzer, Mareike Saathoff, Elisa Quaas, Johanna Pendl, M. Fulde, B. Koksch
{"title":"Fine‐tuning the antimicrobial activity of β‐hairpin peptides with fluorinated amino acids","authors":"S. Chowdhary, Tim Pelzer, Mareike Saathoff, Elisa Quaas, Johanna Pendl, M. Fulde, B. Koksch","doi":"10.1002/pep2.24306","DOIUrl":"https://doi.org/10.1002/pep2.24306","url":null,"abstract":"","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46527363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Guidelines for designing peptoid structures: Insights from the Peptoid Data Bank peptoid结构设计指南:peptoid数据库的见解
IF 2.4 4区 生物学
Peptide Science Pub Date : 2023-03-08 DOI: 10.1002/pep2.24307
James R B Eastwood, Ethan I. Weisberg, Dana Katz, R. Zuckermann, K. Kirshenbaum
{"title":"Guidelines for designing peptoid structures: Insights from the Peptoid Data Bank","authors":"James R B Eastwood, Ethan I. Weisberg, Dana Katz, R. Zuckermann, K. Kirshenbaum","doi":"10.1002/pep2.24307","DOIUrl":"https://doi.org/10.1002/pep2.24307","url":null,"abstract":"The number of structural studies of peptoids has grown dramatically over the past 20 years. To date, over 100 high‐resolution structures have been reported for peptoids, which are typically defined as N‐substituted glycine oligomers. We have collected these structures and standardized their sequence representations to facilitate structural analysis as the dataset continues to grow. These structures are presented online as The Peptoid Data Bank (databank.peptoids.org), which also provides persistent links to the published structural data. This review analyzes the present collection of structures and finds extensive support for grouping side chains by their chemistry at the position adjacent to the backbone nitrogen. Groups of side chains with similar chemistry at this position show similar influences on the conformational preferences of the backbone. We also observe a relationship between the side chain and backbone conformations for many monomers that has not previously attracted significant discussion: the values of the χ1 and ϕ dihedrals are correlated. We outline a general design strategy for attaining a specific backbone conformation based on the patterns seen in the collected structures.","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47638341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信