2022 Asian Conference on Frontiers of Power and Energy (ACFPE)最新文献

筛选
英文 中文
A Harmonic Source Localization Method Based on Critical Admittance Screening With Adjusted Coefficient of Determination 基于可调确定系数临界导纳筛选的谐波源定位方法
2022 Asian Conference on Frontiers of Power and Energy (ACFPE) Pub Date : 2022-10-01 DOI: 10.1109/ACFPE56003.2022.9952248
Qingshen Xu, Yuanyuan Sun, Shulin Yin, Ruize Sun, Qianqian Li, Demin Qi, Bowen Li
{"title":"A Harmonic Source Localization Method Based on Critical Admittance Screening With Adjusted Coefficient of Determination","authors":"Qingshen Xu, Yuanyuan Sun, Shulin Yin, Ruize Sun, Qianqian Li, Demin Qi, Bowen Li","doi":"10.1109/ACFPE56003.2022.9952248","DOIUrl":"https://doi.org/10.1109/ACFPE56003.2022.9952248","url":null,"abstract":"The large-scale integration of multiple types of distributed photovoltaics and the increase of nonlinear loads such as residential loads has resulted in significant harmonic voltage distortions in the power system, which is contrary to the high power quality requirements. Harmonic mitigation has received much attention recently, and harmonic contribution evaluation is an important prerequisite. This paper proposes a harmonic source localization method based on critical admittance screening with the adjusted coefficient of determination, in order to determine whether the main contribution to PCC's harmonic voltage distortions is upstream or downstream. The data screening method is based on adjusted coefficients of determination according to the voltage and current data measured at the point of common coupling (PCC). Harmonic source localization is performed with critical admittance. Compared with the traditional harmonic source localization method, data segments with a high degree of linearity in the harmonic voltage and current of the PCC are selected based on the adjusted coefficients of determination. The effect of fluctuations in the background harmonic of the novel power system on the critical admittance is effectively circumvented, which improves the estimation accuracy of the harmonic admittance. In order to verify the performance of the proposed method, several scenarios with different properties of harmonic admittance have been designed in MATLAB. The verification demonstrates the validity and accuracy of the proposed method.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"290 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115214321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fault location method based on deep learning in new power system 基于深度学习的新型电力系统故障定位方法
2022 Asian Conference on Frontiers of Power and Energy (ACFPE) Pub Date : 2022-10-01 DOI: 10.1109/ACFPE56003.2022.9952264
Hong Yin, Shourui Liu, Xuan Liu, Yuan Zhang, Chunbo Li
{"title":"Fault location method based on deep learning in new power system","authors":"Hong Yin, Shourui Liu, Xuan Liu, Yuan Zhang, Chunbo Li","doi":"10.1109/ACFPE56003.2022.9952264","DOIUrl":"https://doi.org/10.1109/ACFPE56003.2022.9952264","url":null,"abstract":"Due to the large amount of uncertain energy, the new power system makes the power grid status data more nonlinear and non-stationary, which poses a great challenge to the fault location of protection devices. In this paper, empirical mode decomposition algorithm and deep network model are combined to realize accurate fault location analysis and judgment for complex power system. The introduction of permutation entropy function can realize the processing of set empirical mode decomposition algorithm and optimize the sensitive components that can best represent the characteristics of fault signals. The state data of power system has obvious time characteristics. Using long-term and short-term memory network for fault location analysis can effectively extract the effective information in the fault characteristic data and achieve accurate and efficient fault location analysis. The results prove that the PE-CEEMDAN-LSTM method can obviously realize the accurate fault analysis of complex power system, which the maximum error distance is only 15 m.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"213 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116516828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virtual Synchronous Generator Modeling Based on Harmonic State Space in DQ Frame 基于DQ帧谐波状态空间的虚拟同步发电机建模
2022 Asian Conference on Frontiers of Power and Energy (ACFPE) Pub Date : 2022-10-01 DOI: 10.1109/ACFPE56003.2022.9952236
Xiao Yang, C. Zeng, Xuefeng Wu, Hui Lai, Hong Miao
{"title":"Virtual Synchronous Generator Modeling Based on Harmonic State Space in DQ Frame","authors":"Xiao Yang, C. Zeng, Xuefeng Wu, Hui Lai, Hong Miao","doi":"10.1109/ACFPE56003.2022.9952236","DOIUrl":"https://doi.org/10.1109/ACFPE56003.2022.9952236","url":null,"abstract":"With the increasing proportion of renewable energy and power electronic equipment, the characteristics of traditional power system have changed greatly. Virtual synchronous generator (VSG) is a control strategy that simulates the rotor motion and provides voltage and frequency support for power system. Although virtual synchronous generator can solve the low inertia and weak damping problem caused by high permeability of renewable energy, the influence of harmonic dynamic characteristics on VSG can not be ignored. In order to study the harmonic dynamic characteristics of virtual synchronous generator, it is necessary to establish a model to describe the multi-frequency dynamic characteristics. Based on the theory of harmonic state space (HSS), a small signal model of virtual synchronous generator is established in dq frame. Finally, the HSS model calculation results and MATLAB/Simulink simulation results are provided to validate the proposed model.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115670511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Day-Ahead Generation Schedule of Wind-Thermal-Storage System Considering Prediction Error 考虑预测误差的风热系统日前发电计划
2022 Asian Conference on Frontiers of Power and Energy (ACFPE) Pub Date : 2022-10-01 DOI: 10.1109/ACFPE56003.2022.9952331
A. I.
{"title":"Day-Ahead Generation Schedule of Wind-Thermal-Storage System Considering Prediction Error","authors":"A. I.","doi":"10.1109/ACFPE56003.2022.9952331","DOIUrl":"https://doi.org/10.1109/ACFPE56003.2022.9952331","url":null,"abstract":"In general, the power system reserves some reserve capacity to balance the deviation of load forecast or wind power. If this reserve capacity is not properly prepared, the power system may be in a dangerous state. In this paper, a day-ahead generation schedule of wind-thermal-storage system considering prediction error of wind power and load is proposed to ensure the security of this reserve capacity, as well as, which effectively coordinates the economy and safety of the day-ahead generation schedule. The actual value is regarded as the sum of the predicted value and its deviation for wind power and load in the proposed method. Among them, the predicted deviation is balanced and tracked by the automatic generation control (AGC) unit, and its output active power and reserved reserve capacity are modeled. What's more, the AGC has sufficient adjustable upper and lower limits to balance the electric power by applying constraints, and has the ability to track the fluctuation of the prediction deviation. Furthermore, since the prediction deviation is a random number, the model with random parameters is transformed into a deterministic model through a robust peer-to-peer model to verify the effect in the extreme scenario, as well as, a distributed energy storage device is introduced to promote wind power consumption and optimize the system operation economy. Finally, in an IEEE 30 node system, the background of high proportion of wind power connected to the power system is set, and the security and economy of reserve capacity under the extreme scenario are analyzed through the method proposed in this paper.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123612645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on energy regulation strategy of six-phase motor for multi-mode combined propulsion system 多模联合推进系统六相电机能量调节策略研究
2022 Asian Conference on Frontiers of Power and Energy (ACFPE) Pub Date : 2022-10-01 DOI: 10.1109/ACFPE56003.2022.9952352
Weibo Li, Zhongtian Zhang, Zhenjie Zou, Ning Li
{"title":"Research on energy regulation strategy of six-phase motor for multi-mode combined propulsion system","authors":"Weibo Li, Zhongtian Zhang, Zhenjie Zou, Ning Li","doi":"10.1109/ACFPE56003.2022.9952352","DOIUrl":"https://doi.org/10.1109/ACFPE56003.2022.9952352","url":null,"abstract":"In order to ensure that the multi-phase motor can adapt to the fuel-electric combined propulsion system, it is necessary to conduct a special study on the six-phase motor operating conditions and its energy regulation strategy. With the help of the simulation software MATLAB/Simulink, this paper establishes the simulation model of the combined propulsion system, and carries out the visual simulation analysis and verification of the motor control strategy under four typical operating conditions. The simulation results show that the fuel-electric combined propulsion system can work in four typical working conditions, and the energy control strategy of the six-phase induction motor is correct.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114552284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primary frequency regulation performance evaluation of thermal power units based on frequency regulation data segment identification using improved swinging door algorithm 基于改进摆门算法的调频数据段识别的火电机组一次调频性能评价
2022 Asian Conference on Frontiers of Power and Energy (ACFPE) Pub Date : 2022-10-01 DOI: 10.1109/ACFPE56003.2022.9952309
Zhenyi Wang, Bin Hu, Xuegang Lu, Ziyu Zhang, Changbin Ju, Xiaosheng Zhang, Tao Ding
{"title":"Primary frequency regulation performance evaluation of thermal power units based on frequency regulation data segment identification using improved swinging door algorithm","authors":"Zhenyi Wang, Bin Hu, Xuegang Lu, Ziyu Zhang, Changbin Ju, Xiaosheng Zhang, Tao Ding","doi":"10.1109/ACFPE56003.2022.9952309","DOIUrl":"https://doi.org/10.1109/ACFPE56003.2022.9952309","url":null,"abstract":"As a key power system primal frequency regulation (PFR) resource, the PFR performance evaluation of thermal power units has a significant meaning. However, most PFR performance evaluation depends on the unit performance test which leads to a result different from the actual operation performance. In this paper, a PFR performance evaluation based on frequency regulation data segment identification in daily operation is proposed. Firstly, the ramping data segments from daily operating data are selected by the improved swinging door algorithm. Secondly, PFR data segments are identified by three rules. Thirdly, three evaluation indicators including the response time, the adjustment coefficient, and the stable time of the units are calculated and a comprehensive index is formulated to evaluate the PFR performance of thermal power units by the entropy-osculating value method. Finally, the effectiveness of the proposed method is verified by a practical case.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122434264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topology Design and Performance Analysis of a MMC Based Solid-State Transformer 基于MMC的固态变压器拓扑设计与性能分析
2022 Asian Conference on Frontiers of Power and Energy (ACFPE) Pub Date : 2022-10-01 DOI: 10.1109/ACFPE56003.2022.9952179
Baorong Zhou, Shiyang Li, Jianing Li, Lei Chen, Xuefeng Qiao, Hongkun Chen
{"title":"Topology Design and Performance Analysis of a MMC Based Solid-State Transformer","authors":"Baorong Zhou, Shiyang Li, Jianing Li, Lei Chen, Xuefeng Qiao, Hongkun Chen","doi":"10.1109/ACFPE56003.2022.9952179","DOIUrl":"https://doi.org/10.1109/ACFPE56003.2022.9952179","url":null,"abstract":"As a very promising power electronic equipment, the solid-state transformer (SST) provides favorable interfaces for distributed generation, energy storage, and various types of power loads. The research on the SST's structural topology is of significance. In this paper, a three-stage SST based on the modular multilevel converter (MMC) technology is established, and the related topology design and mathematical modeling method are presented with an elaboration of the control strategy. Finally, a simulation model of the designed SST is constructed in Simulink, and the SST connecting with 10 kV and 380 V power grids is done. From the simulation results, it is concluded that the SST can satisfactorily complete the predictive functions, thus verifying the feasibility of the proposed SST topology.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128266516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coordinated planning of source-grid-load-storage power system to promote large-scale renewable energy consumption 统筹规划源-网-荷-蓄电力系统,促进可再生能源大规模消纳
2022 Asian Conference on Frontiers of Power and Energy (ACFPE) Pub Date : 2022-10-01 DOI: 10.1109/ACFPE56003.2022.9952299
Bin Che, Zelong Zhang, Dongni Wei, Panlong Jin, Yan Yang
{"title":"Coordinated planning of source-grid-load-storage power system to promote large-scale renewable energy consumption","authors":"Bin Che, Zelong Zhang, Dongni Wei, Panlong Jin, Yan Yang","doi":"10.1109/ACFPE56003.2022.9952299","DOIUrl":"https://doi.org/10.1109/ACFPE56003.2022.9952299","url":null,"abstract":"With the increase of wind and solar power plants, the uncertainty of their output also brings challenges to the power system. These factors should also be considered in long-term planning of the power system. Therefore, a source-grid-load-storage power system coordinated expansion planning model that considers demand response services is proposed in this paper. In this way, the ability to absorb large-scale renewable energy such as light and wind in the power system is improved. First, the power system operation model is proposed in this paper; secondly, the demand response services and electricity storage facility are modeled in detail; then demand response and electricity storage facility resources are used to alleviate the intermittent output of wind and solar power plants on the power side. A load-side demand response service planning model is proposed, and a source-network-load coordination planning model is proposed. Finally, the rationality of the model is verified through the analysis of simulation examples, and the advantages of the coordinated planning of source-grid-load-storage power system are proved. In addition, it can effectively guarantee the safety of power system operation and improve the absorption capacity of wind and light energy.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127997062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Optimal Siting and Sizing for Distributed Energy Storage System in Active Distribution Networks for Peak Load Management 面向高峰负荷管理的主动配电网分布式储能系统优化选址与规模研究
2022 Asian Conference on Frontiers of Power and Energy (ACFPE) Pub Date : 2022-10-01 DOI: 10.1109/ACFPE56003.2022.9952232
Z. Cai, Kun Yang, Y. Gu, Sirong Pan, Sashuang Sun, Hanzheng Xie, Peilin Li
{"title":"Optimal Siting and Sizing for Distributed Energy Storage System in Active Distribution Networks for Peak Load Management","authors":"Z. Cai, Kun Yang, Y. Gu, Sirong Pan, Sashuang Sun, Hanzheng Xie, Peilin Li","doi":"10.1109/ACFPE56003.2022.9952232","DOIUrl":"https://doi.org/10.1109/ACFPE56003.2022.9952232","url":null,"abstract":"With the continuous technical economy improvement of electric energy storage, it has become a trend to integrate a large number of DESSs (Distributed Energy Storage Systems) in the distribution network. In order to make full use of the battery energy storage system to delay the upgrading and reconstruction of the distribution network, a comprehensive optimization method of selecting the site and capacity to participate in the peak load regulation of distribution network is proposed. In the proposed method, a bilevel planning model is built where the upper layer model is the capacity configuration model, which considers the investment income of DESSs and delaying the expansion and upgrade of the distribution network; whereas the lower layer model is the installation spot optimization model, which considers the characteristics and capacity limit of DESSs, and the load regulation for peak-load shifting. The validity of the proposed method is verified by the IEEE 33-bus system. Simulative results show that, the proposed comprehensive optimization method is suitable for different application scenarios with the integration of DESSs of different capacity configurations and different installation spots and can provide a technical support for the planning and managing of largescale DESSs accessing to the distribution network.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125755639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Transient High-Frequency Impedance Pilot Protection for Urban Flexible DC Distribution Network 城市柔性直流配电网暂态高频阻抗导频保护
2022 Asian Conference on Frontiers of Power and Energy (ACFPE) Pub Date : 2022-10-01 DOI: 10.1109/ACFPE56003.2022.9952303
Xiao Zhang, Xinyan Fang
{"title":"Transient High-Frequency Impedance Pilot Protection for Urban Flexible DC Distribution Network","authors":"Xiao Zhang, Xinyan Fang","doi":"10.1109/ACFPE56003.2022.9952303","DOIUrl":"https://doi.org/10.1109/ACFPE56003.2022.9952303","url":null,"abstract":"With the development of new energy, switching from AC to DC has become a development trend of the power system. The urban distribution network has high requirements on power quality, and the use of flexible DC technology is the best choice at present. Different from traditional motors, the flexible DC system has low inertia and small damping. When the fault occurs on DC line, the current rising rate is extremely fast, which seriously threatens the safe operation of the urban distribution network. It is necessary to design high-reliability and fast protection according to its fault characteristics. This paper proposes a pilot protection method based on transient high-frequency impedance by analyzing the variation characteristics of transient electrical quantities after a DC line fault. And regional protection can also be formed through the cooperation of adjacent lines. Finally, a simulation was built to verify the accuracy of the principle.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125847236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信