Benoît Delabays, Katerina Trajanoska, Joshua Walonoski, Vincent Mooser
{"title":"Cardiovascular Pharmacogenetics: From Discovery of Genetic Association to Clinical Adoption of Derived Test.","authors":"Benoît Delabays, Katerina Trajanoska, Joshua Walonoski, Vincent Mooser","doi":"10.1124/pharmrev.123.000750","DOIUrl":"10.1124/pharmrev.123.000750","url":null,"abstract":"<p><p>Recent breakthroughs in human genetics and in information technologies have markedly expanded our understanding at the molecular level of the response to drugs, i.e., pharmacogenetics (PGx), across therapy areas. This review is restricted to PGx for cardiovascular (CV) drugs. First, we examined the PGx information in the labels approved by regulatory agencies in Europe, Japan, and North America and related recommendations from expert panels. Out of 221 marketed CV drugs, 36 had PGx information in their labels approved by one or more agencies. The level of annotations and recommendations varied markedly between agencies and expert panels. Clopidogrel is the only CV drug with consistent PGx recommendation (i.e., \"actionable\"). This situation prompted us to dissect the steps from discovery of a PGx association to clinical translation. We found 101 genome-wide association studies that investigated the response to CV drugs or drug classes. These studies reported significant associations for 48 PGx traits mapping to 306 genes. Six of these 306 genes are mentioned in the corresponding PGx labels or recommendations for CV drugs. Genomic analyses also highlighted the wide between-population differences in risk allele frequencies and the individual load of actionable PGx variants. Given the high attrition rate and the long road to clinical translation, additional work is warranted to identify and validate PGx variants for more CV drugs across diverse populations and to demonstrate the utility of PGx testing. To that end, pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond. SIGNIFICANCE STATEMENT: Despite spectacular breakthroughs in human molecular genetics and information technologies, consistent evidence supporting PGx testing in the cardiovascular area is limited to a few drugs. Additional work is warranted to discover and validate new PGx markers and demonstrate their utility. Pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":" ","pages":"791-827"},"PeriodicalIF":19.3,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hope on the Horizon: Promising Therapies for Steatotic Liver Disease","authors":"Amirhossein Sahebkar, Ali H. Eid","doi":"10.1124/pharmrev.124.001269","DOIUrl":"https://doi.org/10.1124/pharmrev.124.001269","url":null,"abstract":"Steatotic liver disease (SLD) is a highly prevalent chronic liver disease with significant challenges for global health. The pathophysiology of SLD involves an interplay among genetic, endocrine, and metabolic factors. Successful management of SLD entails accurate diagnosis and disease monitoring through noninvasive methods such as advanced imaging techniques and biomarkers. Many emerging pharmacotherapies for SLD are now in the pipeline, which target different pathways like collagen turnover, fibrogenesis, inflammation, and metabolism. The recent approval of resmetirom for noncirrhotic metabolic dysfunction–associated steatohepatitis (MASH) has been a milestone in addressing the unmet medical need for an efficacious SLD treatment. Finally, the potential of personalized medicine approaches and interdisciplinary cooperation in improving patient outcomes and reducing disease burden should be strongly pursued.","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"8 1","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generation of Comprehensive GPCR-Transducer-Deficient Cell Lines to Dissect the Complexity of GPCR Signaling.","authors":"Ayaki Saito, Ryoji Kise, Asuka Inoue","doi":"10.1124/pharmrev.124.001186","DOIUrl":"10.1124/pharmrev.124.001186","url":null,"abstract":"<p><p>G-protein-coupled receptors (GPCRs) compose the largest family of transmembrane receptors and are targets of approximately one-third of Food and Drug Administration-approved drugs owing to their involvement in almost all physiologic processes. GPCR signaling occurs through the activation of heterotrimeric G-protein complexes and <i>β</i>-arrestins, both of which serve as transducers, resulting in distinct cellular responses. Despite seeming simple at first glance, accumulating evidence indicates that activation of either transducer is not a straightforward process as a stimulation of a single molecule has the potential to activate multiple signaling branches. The complexity of GPCR signaling arises from the aspects of G-protein-coupling selectivity, biased signaling, interpathway crosstalk, and variable molecular modifications generating these diverse signaling patterns. Numerous questions relative to these aspects of signaling remained unanswered until the recent development of CRISPR genome-editing technology. Such genome editing technology presents opportunities to chronically eliminate the expression of G-protein subunits, <i>β</i>-arrestins, G-protein-coupled receptor kinases (GRKs), and many other signaling nodes in the GPCR pathways at one's convenience. Here, we review the practicality of using CRISPR-derived knockout (KO) cells in the experimental contexts of unraveling the molecular details of GPCR signaling mechanisms. To mention a few, KO cells have revealed the contribution of <i>β</i>-arrestins in ERK activation, G<i>α</i> protein selectivity, GRK-based regulation of GPCRs, and many more, hence validating its broad applicability in GPCR studies. SIGNIFICANCE STATEMENT: This review emphasizes the practical application of G-protein-coupled receptor (GPCR) transducer knockout (KO) cells in dissecting the intricate regulatory mechanisms of the GPCR signaling network. Currently available cell lines, along with accumulating KO cell lines in diverse cell types, offer valuable resources for systematically elucidating GPCR signaling regulation. Given the association of GPCR signaling with numerous diseases, uncovering the system-based signaling map is crucial for advancing the development of novel drugs targeting specific diseases.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":" ","pages":"599-619"},"PeriodicalIF":19.3,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel Bsteh, Assunta Dal Bianco, Tobias Zrzavy, Thomas Berger
{"title":"Novel and Emerging Treatments to Target Pathophysiological Mechanisms in Various Phenotypes of Multiple Sclerosis.","authors":"Gabriel Bsteh, Assunta Dal Bianco, Tobias Zrzavy, Thomas Berger","doi":"10.1124/pharmrev.124.001073","DOIUrl":"10.1124/pharmrev.124.001073","url":null,"abstract":"<p><p>The objective is to comprehensively review novel pharmacotherapies used in multiple sclerosis (MS) and the possibilities they may carry for therapeutic improvement. Specifically, we discuss pathophysiological mechanisms worth targeting in MS, ranging from well known targets, such as autoinflammation and demyelination, to more novel and advanced targets, such as neuroaxonal damage and repair. To set the stage, a brief overview of clinical MS phenotypes is provided, followed by a comprehensive recapitulation of both clinical and paraclinical outcomes available to assess the effectiveness of treatments in achieving these targets. Finally, we discuss various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials. SIGNIFICANCE STATEMENT: This comprehensive review discusses pathophysiological mechanisms worth targeting in multiple sclerosis. Various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials, are reviewed.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":" ","pages":"564-578"},"PeriodicalIF":19.3,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pharmacology and Precision Medicine-Preparing for the Next Era in Clinical Medicine-Editorial.","authors":"Rhian M Touyz","doi":"10.1124/pharmrev.124.001017","DOIUrl":"10.1124/pharmrev.124.001017","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"76 4","pages":"559-560"},"PeriodicalIF":19.3,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Chance to Grow and Excel as an Associate Editor of <i>Pharmacological Reviews</i>-Editorial.","authors":"Ali H Eid","doi":"10.1124/pharmrev.124.001101","DOIUrl":"10.1124/pharmrev.124.001101","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"76 3","pages":"321-322"},"PeriodicalIF":19.3,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140857629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A 25-Year Journey as Author and Associate Editor of <i>Pharmacological Reviews</i>-Editorial.","authors":"Martin C Michel","doi":"10.1124/pharmrev.123.000990","DOIUrl":"10.1124/pharmrev.123.000990","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"76 2","pages":"196-198"},"PeriodicalIF":19.3,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic <i>β</i>-Cell Function and Diabetes.","authors":"Matthew J Varney, Jeffrey L Benovic","doi":"10.1124/pharmrev.123.001015","DOIUrl":"10.1124/pharmrev.123.001015","url":null,"abstract":"<p><p>Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic <i>β</i> cells, GPCRs regulate <i>β</i>-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient <i>β</i>-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the <i>β</i> cell serve a critical role in the regulation of <i>β</i>-cell function, including <i>β</i>-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating <i>β</i>-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic <i>β</i> cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve <i>β</i>-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of <i>β</i>-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"76 2","pages":"267-299"},"PeriodicalIF":19.3,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pharmacological Reviews’75th Year Anniversary: Past and Future—Editorial","authors":"Lynette C. Daws","doi":"10.1124/pharmrev.123.000989","DOIUrl":"https://doi.org/10.1124/pharmrev.123.000989","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"1 1","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138657374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emergence of extracellular vesicles as 'liquid biopsy' for neurological disorders: Boom or Bust","authors":"Ashish Kumar, Michael A. Nader, Gagan Deep","doi":"10.1124/pharmrev.122.000788","DOIUrl":"https://doi.org/10.1124/pharmrev.122.000788","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":" 0","pages":""},"PeriodicalIF":21.1,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138961718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}