Pharmacological Reviews最新文献

筛选
英文 中文
Application of Kirchhoff's Laws to pharmacologic and pharmacokinetic analyses.
IF 19.3 1区 医学
Pharmacological Reviews Pub Date : 2025-03-21 DOI: 10.1016/j.pharmr.2025.100050
Leslie Z Benet, Jasleen K Sodhi, Markus Ville Tiitto, Yue Xiang
{"title":"Application of Kirchhoff's Laws to pharmacologic and pharmacokinetic analyses.","authors":"Leslie Z Benet, Jasleen K Sodhi, Markus Ville Tiitto, Yue Xiang","doi":"10.1016/j.pharmr.2025.100050","DOIUrl":"https://doi.org/10.1016/j.pharmr.2025.100050","url":null,"abstract":"<p><p>Recently, we introduced a straightforward approach to derive clearance and rate constant equations, without relying on differential equations, utilizing Kirchhoff's Laws, a well known physics methodology used to describe rate-defining processes either in series or parallel. Manuscripts from our laboratory have re-examined published experimental data, demonstrating that the Kirchhoff's Laws methodology can explain data previously considered anomalous, such as the following: (1) all experimental perfused liver clearance data conforming to the equation once thought to represent the unphysiological well stirred model, (2) instances where linear pharmacokinetic systemic bioavailability determinations exceed unity, (3) renal clearance being influenced by drug input processes, (4) statistically significant differences in bioavailability measures between urinary excretion and systemic concentration measurements, and (5) how the long-accepted steady-state clearance approach used in pharmacokinetics for the past half-century leads to unrealistic conclusions about the relationship between liver-to-blood Kp<sub>uu</sub> and hepatic availability F<sub>H</sub>. These findings demonstrate the potential for errors in pharmacokinetic evaluations that rely on differential equations. The Kirchhoff's Laws approach is applicable to all pharmacokinetic analyses of quality experimental data, both those that align with present pharmacokinetic theory, and those that do not. Although 3 publications have attempted to rebut our position, they fail to address unexplained experimental data, and we detail here why these analyses are invalid. Our discoveries are ongoing. Additionally, we briefly discuss the application of Kirchoff's Laws to saturable nonlinear kinetics, explaining increased pharmacodynamic response for extended vs immediate release dosage forms, as well as the advantages of successfully formulating high hepatic extraction drugs. SIGNIFICANCE STATEMENT: The Kirchhoff's Laws approach to deriving clearance equations for linear systems in parallel or in series, independent of differential equations, successfully describes anomalous published pharmacokinetic data that have previously been unexplained. We review 9 experimental outcomes in humans that are newly explained using the Kirchhoff's Laws approach, including the extension to deriving nonlinear saturable clearance relationships.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 3","pages":"100050"},"PeriodicalIF":19.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activating autophagy to eliminate toxic protein aggregates with small molecules in neurodegenerative diseases. 利用小分子激活自噬,消除神经退行性疾病中的毒性蛋白质聚集。
IF 19.3 1区 医学
Pharmacological Reviews Pub Date : 2025-03-14 DOI: 10.1016/j.pharmr.2025.100053
Yuqi Fu, Jin Zhang, Rui Qin, Yueting Ren, Tingting Zhou, Bo Han, Bo Liu
{"title":"Activating autophagy to eliminate toxic protein aggregates with small molecules in neurodegenerative diseases.","authors":"Yuqi Fu, Jin Zhang, Rui Qin, Yueting Ren, Tingting Zhou, Bo Han, Bo Liu","doi":"10.1016/j.pharmr.2025.100053","DOIUrl":"https://doi.org/10.1016/j.pharmr.2025.100053","url":null,"abstract":"<p><p>Neurodegenerative diseases (NDs), such as Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are well known to pose formidable challenges for their treatment due to their intricate pathogenesis and substantial variability among patients, including differences in environmental exposures and genetic predispositions. One of the defining characteristics of NDs is widely reported to be the buildup of misfolded proteins. For example, Alzheimer disease is marked by amyloid beta and hyperphosphorylated Tau aggregates, whereas Parkinson disease exhibits α-synuclein aggregates. Amyotrophic lateral sclerosis and frontotemporal dementia exhibit TAR DNA-binding protein 43, superoxide dismutase 1, and fused-in sarcoma protein aggregates, and Huntington disease involves mutant huntingtin and polyglutamine aggregates. These misfolded proteins are the key biomarkers of NDs and also serve as potential therapeutic targets, as they can be addressed through autophagy, a process that removes excess cellular inclusions to maintain homeostasis. Various forms of autophagy, including macroautophagy, chaperone-mediated autophagy, and microautophagy, hold a promise in eliminating toxic proteins implicated in NDs. In this review, we focus on elucidating the regulatory connections between autophagy and toxic proteins in NDs, summarizing the cause of the aggregates, exploring their impact on autophagy mechanisms, and discussing how autophagy can regulate toxic protein aggregation. Moreover, we underscore the activation of autophagy as a potential therapeutic strategy across different NDs and small molecules capable of activating autophagy pathways, such as rapamycin targeting the mTOR pathway to clear α-synuclein and Sertraline targeting the AMPK/mTOR/RPS6KB1 pathway to clear Tau, to further illustrate their potential in NDs' therapeutic intervention. Together, these findings would provide new insights into current research trends and propose small-molecule drugs targeting autophagy as promising potential strategies for the future ND therapies. SIGNIFICANCE STATEMENT: This review provides an in-depth overview of the potential of activating autophagy to eliminate toxic protein aggregates in the treatment of neurodegenerative diseases. It also elucidates the fascinating interrelationships between toxic proteins and the process of autophagy of \"chasing and escaping\" phenomenon. Moreover, the review further discusses the progress utilizing small molecules to activate autophagy to improve the efficacy of therapies for neurodegenerative diseases by removing toxic protein aggregates.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 3","pages":"100053"},"PeriodicalIF":19.3,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143788590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Toward a paradigm shift: Oral agents and injectable drugs in the future of obesity management" [Pharmacological Reviews 77 (2025) 100008]. 走向范式转变:未来肥胖症治疗中的口服药物和注射药物" [Pharmacological Reviews 77 (2025) 100008]的更正。
IF 19.3 1区 医学
Pharmacological Reviews Pub Date : 2025-03-07 DOI: 10.1016/j.pharmr.2025.100047
Amirhossein Sahebkar, Ali H Eid
{"title":"Corrigendum to \"Toward a paradigm shift: Oral agents and injectable drugs in the future of obesity management\" [Pharmacological Reviews 77 (2025) 100008].","authors":"Amirhossein Sahebkar, Ali H Eid","doi":"10.1016/j.pharmr.2025.100047","DOIUrl":"10.1016/j.pharmr.2025.100047","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 3","pages":"100047"},"PeriodicalIF":19.3,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143582355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reversing the odds: Advanced and emerging therapeutic strategies for male infertility.
IF 19.3 1区 医学
Pharmacological Reviews Pub Date : 2025-03-01 Epub Date: 2024-12-31 DOI: 10.1016/j.pharmr.2024.100020
Ali H Eid
{"title":"Reversing the odds: Advanced and emerging therapeutic strategies for male infertility.","authors":"Ali H Eid","doi":"10.1016/j.pharmr.2024.100020","DOIUrl":"https://doi.org/10.1016/j.pharmr.2024.100020","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100020"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Hippo pathway: Organ size control and beyond.
IF 19.3 1区 医学
Pharmacological Reviews Pub Date : 2025-03-01 Epub Date: 2024-12-25 DOI: 10.1016/j.pharmr.2024.100031
Pengfei Guo, Sicheng Wan, Kun-Liang Guan
{"title":"The Hippo pathway: Organ size control and beyond.","authors":"Pengfei Guo, Sicheng Wan, Kun-Liang Guan","doi":"10.1016/j.pharmr.2024.100031","DOIUrl":"https://doi.org/10.1016/j.pharmr.2024.100031","url":null,"abstract":"<p><p>The Hippo signaling pathway is a highly conserved signaling network for controlling organ size, tissue homeostasis, and regeneration. It integrates a wide range of intracellular and extracellular signals, such as cellular energy status, cell density, hormonal signals, and mechanical cues, to modulate the activity of YAP/TAZ transcriptional coactivators. A key aspect of Hippo pathway regulation involves its spatial organization at the plasma membrane, where upstream regulators localize to specific membrane subdomains to regulate the assembly and activation of the pathway components. This spatial organization is critical for the precise control of Hippo signaling, as it dictates the dynamic interactions between pathway components and their regulators. Recent studies have also uncovered the role of biomolecular condensation in regulating Hippo signaling, adding complexity to its control mechanisms. Dysregulation of the Hippo pathway is implicated in various pathological conditions, particularly cancer, where alterations in YAP/TAZ activity contribute to tumorigenesis and drug resistance. Therapeutic strategies targeting the Hippo pathway have shown promise in both cancer treatment, by inhibiting YAP/TAZ signaling, and regenerative medicine, by enhancing YAP/TAZ activity to promote tissue repair. The development of small molecule inhibitors targeting the YAP-TEAD interaction and other upstream regulators offers new avenues for therapeutic intervention. SIGNIFICANCE STATEMENT: The Hippo signaling pathway is a key regulator of organ size, tissue homeostasis, and regeneration, with its dysregulation linked to diseases such as cancer. Understanding this pathway opens new possibilities for therapeutic approaches in regenerative medicine and oncology, with the potential to translate basic research into improved clinical outcomes.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100031"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From bone sentinel to immune savant: Vitamin D and its receptor's pharmacology.
IF 19.3 1区 医学
Pharmacological Reviews Pub Date : 2025-03-01 Epub Date: 2025-01-21 DOI: 10.1016/j.pharmr.2024.100036
Ali H Eid
{"title":"From bone sentinel to immune savant: Vitamin D and its receptor's pharmacology.","authors":"Ali H Eid","doi":"10.1016/j.pharmr.2024.100036","DOIUrl":"https://doi.org/10.1016/j.pharmr.2024.100036","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100036"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacologic treatments for gastroparesis.
IF 19.3 1区 医学
Pharmacological Reviews Pub Date : 2025-03-01 Epub Date: 2024-11-23 DOI: 10.1016/j.pharmr.2024.100019
Michael Camilleri, Kara J Jencks
{"title":"Pharmacologic treatments for gastroparesis.","authors":"Michael Camilleri, Kara J Jencks","doi":"10.1016/j.pharmr.2024.100019","DOIUrl":"https://doi.org/10.1016/j.pharmr.2024.100019","url":null,"abstract":"<p><p>Gastroparesis is a neurogastrointestinal disorder of motility in which patients experience symptoms of nausea, vomiting, bloating, early satiety, postprandial fullness, upper abdominal discomfort or pain, and delayed gastric emptying of solids based on scintigraphy or stable isotope breath test when mechanical obstruction has been excluded. Symptoms of gastroparesis may result from diverse pathophysiological mechanisms, including antroduodenal hypomotility, pylorospasm, increased gastric accommodation, and visceral hypersensitivity. The most common etiologies of gastroparesis are idiopathic, diabetic, and postsurgical, and less frequent causes are neurodegenerative disorders (Parkinson's disease), myopathies (scleroderma, amyloidosis), medication-induced (glucagon-like peptide-1 agonists and opioid agents), and paraneoplastic syndrome. This review addresses pharmacologic management of gastroparesis including prokinetic and antiemetic agents, pharmacologic agents targeting the pylorus, and effects of neuromodulators. SIGNIFICANCE STATEMENT: Gastroparesis is a neurogastrointestinal motility disorder characterized by delayed gastric emptying without mechanical obstruction with numerous upper gastrointestinal symptoms, including nausea and vomiting. The management of gastroparesis involves nutritional support, medications, and procedures. The only Food and Drug Administration-approved medication for gastroparesis is metoclopramide. This article reviews the pharmacology and efficacy of all classes of antiemetics or prokinetic effects used in gastroparesis. There is still a considerable unmet need for efficacious medications specifically for the treatment of gastroparesis, especially in refractory cases.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100019"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological treatment for metabolic dysfunction-associated steatotic liver disease and related disorders: Current and emerging therapeutic options.
IF 19.3 1区 医学
Pharmacological Reviews Pub Date : 2025-03-01 Epub Date: 2024-11-22 DOI: 10.1016/j.pharmr.2024.100018
Xiang Zhang, Harry Cheuk-Hay Lau, Jun Yu
{"title":"Pharmacological treatment for metabolic dysfunction-associated steatotic liver disease and related disorders: Current and emerging therapeutic options.","authors":"Xiang Zhang, Harry Cheuk-Hay Lau, Jun Yu","doi":"10.1016/j.pharmr.2024.100018","DOIUrl":"https://doi.org/10.1016/j.pharmr.2024.100018","url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD; formerly known as nonalcoholic fatty liver disease) is a chronic liver disease affecting over a billion individuals worldwide. MASLD can gradually develop into more severe liver pathologies, including metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and liver malignancy. Notably, although being a global health problem, there are very limited therapeutic options against MASLD and its related diseases. While a thyroid hormone receptor agonist (resmetirom) is recently approved for MASH treatment, other efforts to control these diseases remain unsatisfactory. Given the projected rise in MASLD and MASH incidence, it is urgent to develop novel and effective therapeutic strategies against these prevalent liver diseases. In this article, the pathogenic mechanisms of MASLD and MASH, including insulin resistance, dysregulated nuclear receptor signaling, and genetic risk factors (eg, patatin-like phospholipase domain-containing 3 and hydroxysteroid 17-β dehydrogenase-13), are introduced. Various therapeutic interventions against MASH are then explored, including approved medication (resmetirom), drugs that are currently in clinical trials (eg, glucagon-like peptide 1 receptor agonist, fibroblast growth factor 21 analog, and PPAR agonist), and those failed in previous trials (eg, obeticholic acid and stearoyl-CoA desaturase 1 antagonist). Moreover, given that the role of gut microbes in MASLD is increasingly acknowledged, alterations in the gut microbiota and microbial mechanisms in MASLD development are elucidated. Therapeutic approaches that target the gut microbiota (eg, dietary intervention and probiotics) against MASLD and related diseases are further explored. With better understanding of the multifaceted pathogenic mechanisms, the development of innovative therapeutics that target the root causes of MASLD and MASH is greatly facilitated. The possibility of alleviating MASH and achieving better patient outcomes is within reach. SIGNIFICANCE STATEMENT: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, and it can progress to more severe pathologies, including steatohepatitis, cirrhosis, and liver cancer. Better understanding of the pathogenic mechanisms of these diseases has facilitated the development of innovative therapeutic strategies. Moreover, increasing evidence has illustrated the crucial role of gut microbiota in the pathogenesis of MASLD and related diseases. It may be clinically feasible to target gut microbes to alleviate MASLD in the future.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100018"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disease-modifying pharmacological treatments of type 1 diabetes: Molecular mechanisms, target checkpoints, and possible combinatorial treatments.
IF 19.3 1区 医学
Pharmacological Reviews Pub Date : 2025-03-01 Epub Date: 2025-01-23 DOI: 10.1016/j.pharmr.2025.100044
Liudmila Kosheleva, Daniil Koshelev, Francisco Alejandro Lagunas-Rangel, Shmuel Levit, Alexander Rabinovitch, Helgi B Schiöth
{"title":"Disease-modifying pharmacological treatments of type 1 diabetes: Molecular mechanisms, target checkpoints, and possible combinatorial treatments.","authors":"Liudmila Kosheleva, Daniil Koshelev, Francisco Alejandro Lagunas-Rangel, Shmuel Levit, Alexander Rabinovitch, Helgi B Schiöth","doi":"10.1016/j.pharmr.2025.100044","DOIUrl":"10.1016/j.pharmr.2025.100044","url":null,"abstract":"<p><p>After a century of extensive scientific investigations, there is still no curative or disease-modifying treatment available that can provide long-lasting remission for patients diagnosed with type 1 diabetes (T1D). Although T1D has historically been regarded as a classic autoimmune disorder targeting and destroying pancreatic islet β-cells, significant research has recently demonstrated that β-cells themselves also play a substantial role in the disease's progression, which could explain some of the unfavorable clinical outcomes. We offer a thorough review of scientific and clinical insights pertaining to molecular mechanisms behind pathogenesis and the different therapeutic interventions in T1D covering over 20 possible pharmaceutical intervention treatments. The interventions are categorized as immune therapies, treatments targeting islet endocrine dysfunctions, medications with dual modes of action in immune and islet endocrine cells, and combination treatments with a broader spectrum of activity. We suggest that these collective findings can provide a valuable platform to discover new combinatorial synergies in search of the curative disease-modifying intervention for T1D. SIGNIFICANCE STATEMENT: This research delves into the underlying causes of T1D and identifies critical mechanisms governing β-cell function in both healthy and diseased states. Thus, we identify specific pathways that could be manipulated by existing or new pharmacological interventions. These interventions fall into several categories: (1) immunomodifying therapies individually targeting immune cell processes, (2) interventions targeting β-cells, (3) compounds that act simultaneously on both immune cell and β-cell pathways, and (4) combinations of compounds simultaneously targeting immune and β-cell pathways.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100044"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11964952/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143524096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The pharmacologic evolution of anticoagulants: From serendipity to precision therapy.
IF 19.3 1区 医学
Pharmacological Reviews Pub Date : 2025-03-01 Epub Date: 2025-01-28 DOI: 10.1016/j.pharmr.2025.100039
Ali H Eid
{"title":"The pharmacologic evolution of anticoagulants: From serendipity to precision therapy.","authors":"Ali H Eid","doi":"10.1016/j.pharmr.2025.100039","DOIUrl":"10.1016/j.pharmr.2025.100039","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100039"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信