Pharmacological ReviewsPub Date : 2023-11-01Epub Date: 2023-09-08DOI: 10.1124/pharmrev.122.000801
Martina Vincenzi, Amin Kremić, Appoline Jouve, Roberta Lattanzi, Rossella Miele, Mohamed Benharouga, Nadia Alfaidy, Stephanie Migrenne-Li, Anumantha G Kanthasamy, Marimelia Porcionatto, Napoleone Ferrara, Igor V Tetko, Laurent Désaubry, Canan G Nebigil
{"title":"Therapeutic Potential of Targeting Prokineticin Receptors in Diseases.","authors":"Martina Vincenzi, Amin Kremić, Appoline Jouve, Roberta Lattanzi, Rossella Miele, Mohamed Benharouga, Nadia Alfaidy, Stephanie Migrenne-Li, Anumantha G Kanthasamy, Marimelia Porcionatto, Napoleone Ferrara, Igor V Tetko, Laurent Désaubry, Canan G Nebigil","doi":"10.1124/pharmrev.122.000801","DOIUrl":"10.1124/pharmrev.122.000801","url":null,"abstract":"<p><p>The prokineticins (PKs) were discovered approximately 20 years ago as small peptides inducing gut contractility. Today, they are established as angiogenic, anorectic, and proinflammatory cytokines, chemokines, hormones, and neuropeptides involved in variety of physiologic and pathophysiological pathways. Their altered expression or mutations implicated in several diseases make them a potential biomarker. Their G-protein coupled receptors, PKR1 and PKR2, have divergent roles that can be therapeutic target for treatment of cardiovascular, metabolic, and neural diseases as well as pain and cancer. This article reviews and summarizes our current knowledge of PK family functions from development of heart and brain to regulation of homeostasis in health and diseases. Finally, the review summarizes the established roles of the endogenous peptides, synthetic peptides and the selective ligands of PKR1 and PKR2, and nonpeptide orthostatic and allosteric modulator of the receptors in preclinical disease models. The present review emphasizes the ambiguous aspects and gaps in our knowledge of functions of PKR ligands and elucidates future perspectives for PK research. SIGNIFICANCE STATEMENT: This review provides an in-depth view of the prokineticin family and PK receptors that can be active without their endogenous ligand and exhibits \"constitutive\" activity in diseases. Their non- peptide ligands display promising effects in several preclinical disease models. PKs can be the diagnostic biomarker of several diseases. A thorough understanding of the role of prokineticin family and their receptor types in health and diseases is critical to develop novel therapeutic strategies with safety concerns.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":" ","pages":"1167-1199"},"PeriodicalIF":19.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10595023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10293502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmacological ReviewsPub Date : 2023-11-01Epub Date: 2023-06-09DOI: 10.1124/pharmrev.123.000834
Saskia Bos, Pauline Pradère, Hanne Beeckmans, Andrea Zajacova, Bart M Vanaudenaerde, Andrew J Fisher, Robin Vos
{"title":"Lymphocyte Depleting and Modulating Therapies for Chronic Lung Allograft Dysfunction.","authors":"Saskia Bos, Pauline Pradère, Hanne Beeckmans, Andrea Zajacova, Bart M Vanaudenaerde, Andrew J Fisher, Robin Vos","doi":"10.1124/pharmrev.123.000834","DOIUrl":"10.1124/pharmrev.123.000834","url":null,"abstract":"<p><p>Chronic lung rejection, also called chronic lung allograft dysfunction (CLAD), remains the major hurdle limiting long-term survival after lung transplantation, and limited therapeutic options are available to slow the progressive decline in lung function. Most interventions are only temporarily effective in stabilizing the loss of or modestly improving lung function, with disease progression resuming over time in the majority of patients. Therefore, identification of effective treatments that prevent the onset or halt progression of CLAD is urgently needed. As a key effector cell in its pathophysiology, lymphocytes have been considered a therapeutic target in CLAD. The aim of this review is to evaluate the use and efficacy of lymphocyte depleting and immunomodulating therapies in progressive CLAD beyond usual maintenance immunosuppressive strategies. Modalities used include anti-thymocyte globulin, alemtuzumab, methotrexate, cyclophosphamide, total lymphoid irradiation, and extracorporeal photopheresis, and to explore possible future strategies. When considering both efficacy and risk of side effects, extracorporeal photopheresis, anti-thymocyte globulin and total lymphoid irradiation appear to offer the best treatment options currently available for progressive CLAD patients. SIGNIFICANCE STATEMENT: Effective treatments to prevent the onset and progression of chronic lung rejection after lung transplantation are still a major shortcoming. Based on existing data to date, considering both efficacy and risk of side effects, extracorporeal photopheresis, anti-thymocyte globulin, and total lymphoid irradiation are currently the most viable second-line treatment options. However, it is important to note that interpretation of most results is hampered by the lack of randomized controlled trials.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":" ","pages":"1200-1217"},"PeriodicalIF":19.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10595020/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9599362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmacological ReviewsPub Date : 2023-11-01Epub Date: 2023-08-16DOI: 10.1124/pharmrev.121.000436
Thomas P Burris, Ian Mitchelle S de Vera, Isabelle Cote, Colin A Flaveny, Udayanga S Wanninayake, Arindam Chatterjee, John K Walker, Nickolas Steinauer, Jinsong Zhang, Laurel A Coons, Kenneth S Korach, Derek W Cain, Anthony N Hollenberg, Paul Webb, Douglas Forrest, Anton M Jetten, Dean P Edwards, Sandra L Grimm, Sean Hartig, Carol A Lange, Jennifer K Richer, Carol A Sartorius, Marc Tetel, Cyrielle Billon, Bahaa Elgendy, Lamees Hegazy, Kristine Griffett, Nahuel Peinetti, Kerry L Burnstein, Travis S Hughes, Sadichha Sitaula, Keitch R Stayrook, Alexander Culver, Meghan H Murray, Brian N Finck, John A Cidlowski
{"title":"International Union of Basic and Clinical Pharmacology CXIII: Nuclear Receptor Superfamily-Update 2023.","authors":"Thomas P Burris, Ian Mitchelle S de Vera, Isabelle Cote, Colin A Flaveny, Udayanga S Wanninayake, Arindam Chatterjee, John K Walker, Nickolas Steinauer, Jinsong Zhang, Laurel A Coons, Kenneth S Korach, Derek W Cain, Anthony N Hollenberg, Paul Webb, Douglas Forrest, Anton M Jetten, Dean P Edwards, Sandra L Grimm, Sean Hartig, Carol A Lange, Jennifer K Richer, Carol A Sartorius, Marc Tetel, Cyrielle Billon, Bahaa Elgendy, Lamees Hegazy, Kristine Griffett, Nahuel Peinetti, Kerry L Burnstein, Travis S Hughes, Sadichha Sitaula, Keitch R Stayrook, Alexander Culver, Meghan H Murray, Brian N Finck, John A Cidlowski","doi":"10.1124/pharmrev.121.000436","DOIUrl":"10.1124/pharmrev.121.000436","url":null,"abstract":"<p><p>The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":" ","pages":"1233-1318"},"PeriodicalIF":19.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10595025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10069944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmacological ReviewsPub Date : 2023-11-01Epub Date: 2023-07-10DOI: 10.1124/pharmrev.122.000584
David J Marcus, Michael R Bruchas
{"title":"Optical Approaches for Investigating Neuromodulation and G Protein-Coupled Receptor Signaling.","authors":"David J Marcus, Michael R Bruchas","doi":"10.1124/pharmrev.122.000584","DOIUrl":"10.1124/pharmrev.122.000584","url":null,"abstract":"<p><p>Despite the fact that roughly 40% of all US Food and Drug Administration (FDA)-approved pharmacological therapeutics target G protein-coupled receptors (GPCRs), there remains a gap in our understanding of the physiologic and functional role of these receptors at the systems level. Although heterologous expression systems and in vitro assays have revealed a tremendous amount about GPCR signaling cascades, how these cascades interact across cell types, tissues, and organ systems remains obscure. Classic behavioral pharmacology experiments lack both the temporal and spatial resolution to resolve these long-standing issues. Over the past half century, there has been a concerted effort toward the development of optical tools for understanding GPCR signaling. From initial ligand uncaging approaches to more recent development of optogenetic techniques, these strategies have allowed researchers to probe longstanding questions in GPCR pharmacology both in vivo and in vitro. These tools have been employed across biologic systems and have allowed for interrogation of everything from specific intramolecular events to pharmacology at the systems level in a spatiotemporally specific manner. In this review, we present a historical perspective on the motivation behind and development of a variety of optical toolkits that have been generated to probe GPCR signaling. Here we highlight how these tools have been used in vivo to uncover the functional role of distinct populations of GPCRs and their signaling cascades at a systems level. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) remain one of the most targeted classes of proteins for pharmaceutical intervention, yet we still have a limited understanding of how their unique signaling cascades effect physiology and behavior at the systems level. In this review, we discuss a vast array of optical techniques that have been devised to probe GPCR signaling both in vitro and in vivo.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":" ","pages":"1119-1139"},"PeriodicalIF":19.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10595021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10125779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmacological ReviewsPub Date : 2023-11-01Epub Date: 2023-06-16DOI: 10.1124/pharmrev.122.000782
Jericho Wee, Xiang Ren Tan, Samuel H Gunther, Mohammed Ihsan, Melvin Khee Shing Leow, Doreen Su-Yin Tan, Johan G Eriksson, Jason Kai Wei Lee
{"title":"Effects of Medications on Heat Loss Capacity in Chronic Disease Patients: Health Implications Amidst Global Warming.","authors":"Jericho Wee, Xiang Ren Tan, Samuel H Gunther, Mohammed Ihsan, Melvin Khee Shing Leow, Doreen Su-Yin Tan, Johan G Eriksson, Jason Kai Wei Lee","doi":"10.1124/pharmrev.122.000782","DOIUrl":"10.1124/pharmrev.122.000782","url":null,"abstract":"<p><p>Pharmacological agents used to treat or manage diseases can modify the level of heat strain experienced by chronically ill and elderly patients via different mechanistic pathways. Human thermoregulation is a crucial homeostatic process that maintains body temperature within a narrow range during heat stress through dry (i.e., increasing skin blood flow) and evaporative (i.e., sweating) heat loss, as well as active inhibition of thermogenesis, which is crucial to avoid overheating. Medications can independently and synergistically interact with aging and chronic disease to alter homeostatic responses to rising body temperature during heat stress. This review focuses on the physiologic changes, with specific emphasis on thermolytic processes, associated with medication use during heat stress. The review begins by providing readers with a background of the global chronic disease burden. Human thermoregulation and aging effects are then summarized to give an understanding of the unique physiologic changes faced by older adults. The effects of common chronic diseases on temperature regulation are outlined in the main sections. Physiologic impacts of common medications used to treat these diseases are reviewed in detail, with emphasis on the mechanisms by which these medications alter thermolysis during heat stress. The review concludes by providing perspectives on the need to understand the effects of medication use in hot environments, as well as a summary table of all clinical considerations and research needs of the medications included in this review. SIGNIFICANCE STATEMENT: Long-term medications modulate thermoregulatory function, resulting in excess physiological strain and predisposing patients to adverse health outcomes during prolonged exposures to extreme heat during rest and physical work (e.g., exercise). Understanding the medication-specific mechanisms of altered thermoregulation has importance in both clinical and research settings, paving the way for work toward refining current medication prescription recommendations and formulating mitigation strategies for adverse drug effects in the heat in chronically ill patients.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":" ","pages":"1140-1166"},"PeriodicalIF":19.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9641295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmacological ReviewsPub Date : 2023-11-01Epub Date: 2023-06-20DOI: 10.1124/pharmrev.123.000906
Yuesheng Zhang
{"title":"Targeting Epidermal Growth Factor Receptor for Cancer Treatment: Abolishing Both Kinase-Dependent and Kinase-Independent Functions of the Receptor.","authors":"Yuesheng Zhang","doi":"10.1124/pharmrev.123.000906","DOIUrl":"10.1124/pharmrev.123.000906","url":null,"abstract":"<p><p>Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is activated by ligand binding, overexpression, or mutation. It is well known for its tyrosine kinase-dependent oncogenic activities in a variety of human cancers. A large number of EGFR inhibitors have been developed for cancer treatment, including monoclonal antibodies, tyrosine kinase inhibitors, and a vaccine. The EGFR inhibitors are aimed at inhibiting the activation or the activity of EGFR tyrosine kinase. However, these agents have shown efficacy in only a few types of cancers. Drug resistance, both intrinsic and acquired, is common even in cancers where the inhibitors have shown efficacy. The drug resistance mechanism is complex and not fully known. The key vulnerability of cancer cells that are resistant to EGFR inhibitors has not been identified. Nevertheless, it has been increasingly recognized in recent years that EGFR also possesses kinase-independent oncogenic functions and that these noncanonical functions may play a crucial role in cancer resistance to EGFR inhibitors. In this review, both kinase-dependent and -independent activities of EGFR are discussed. Also discussed are the mechanisms of actions and therapeutic activities of clinically used EGFR inhibitors and sustained EGFR overexpression and EGFR interaction with other receptor tyrosine kinases to counter the EGFR inhibitors. Moreover, this review discusses emerging experimental therapeutics that have shown potential for overcoming the limitation of the current EGFR inhibitors in preclinical studies. The findings underscore the importance and feasibility of targeting both kinase-dependent and -independent functions of EGFR to enhance therapeutic efficacy and minimize drug resistance. SIGNIFICANCE STATEMENT: EGFR is a major oncogenic driver and therapeutic target, but cancer resistance to current EGFR inhibitors remains a significant unmet clinical problem. This article reviews the cancer biology of EGFR as well as the mechanisms of actions and the therapeutic efficacies of current and emerging EGFR inhibitors. The findings could potentially lead to development of more effective treatments for EGFR-positive cancers.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":" ","pages":"1218-1232"},"PeriodicalIF":19.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10595022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9669511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmacological ReviewsPub Date : 2023-09-01Epub Date: 2023-06-06DOI: 10.1124/pharmrev.122.000795
Zhao Deng, Des R Richardson
{"title":"The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics.","authors":"Zhao Deng, Des R Richardson","doi":"10.1124/pharmrev.122.000795","DOIUrl":"10.1124/pharmrev.122.000795","url":null,"abstract":"<p><p>Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the <i>Myc</i> proto-oncogene family, which consists of three members including <i>c-Myc, N-Myc,</i> and <i>L-Myc.</i> As a pertinent example of the role of the Myc family in tumorigenesis, amplification of <i>MYCN</i> in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1<i>α</i> and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCF<sup>FBXW7</sup>, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3<i>β</i> and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"75 5","pages":"1007-1035"},"PeriodicalIF":19.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10017576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmacological ReviewsPub Date : 2023-09-01Epub Date: 2023-05-10DOI: 10.1124/pharmrev.122.000600
Mauro Maccarrone, Vincenzo Di Marzo, Jürg Gertsch, Uwe Grether, Allyn C Howlett, Tian Hua, Alexandros Makriyannis, Daniele Piomelli, Natsuo Ueda, Mario van der Stelt
{"title":"Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years.","authors":"Mauro Maccarrone, Vincenzo Di Marzo, Jürg Gertsch, Uwe Grether, Allyn C Howlett, Tian Hua, Alexandros Makriyannis, Daniele Piomelli, Natsuo Ueda, Mario van der Stelt","doi":"10.1124/pharmrev.122.000600","DOIUrl":"10.1124/pharmrev.122.000600","url":null,"abstract":"<p><p>The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ<sup>9</sup>-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)<b>-</b>made of receptors, metabolic enzymes, and transporters<b>-</b>that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (<i>N</i>-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"75 5","pages":"885-958"},"PeriodicalIF":19.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10127189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmacological ReviewsPub Date : 2023-09-01Epub Date: 2023-05-03DOI: 10.1124/pharmrev.122.000784
Xiaodong Cheng, Wenli Yang, Wei Lin, Fang Mei
{"title":"Paradoxes of Cellular SUMOylation Regulation: A Role of Biomolecular Condensates?","authors":"Xiaodong Cheng, Wenli Yang, Wei Lin, Fang Mei","doi":"10.1124/pharmrev.122.000784","DOIUrl":"10.1124/pharmrev.122.000784","url":null,"abstract":"<p><p>Protein SUMOylation is a major post-translational modification essential for maintaining cellular homeostasis. SUMOylation has long been associated with stress responses as a diverse array of cellular stress signals are known to trigger rapid alternations in global protein SUMOylation. In addition, while there are large families of ubiquitination enzymes, all small ubiquitin-like modifiers (SUMOs) are conjugated by a set of enzymatic machinery comprising one heterodimeric SUMO-activating enzyme, a single SUMO-conjugating enzyme, and a small number of SUMO protein ligases and SUMO-specific proteases. How a few SUMOylation enzymes specifically modify thousands of functional targets in response to diverse cellular stresses remains an enigma. Here we review recent progress toward understanding the mechanisms of SUMO regulation, particularly the potential roles of liquid-liquid phase separation/biomolecular condensates in regulating cellular SUMOylation during cellular stresses. In addition, we discuss the role of protein SUMOylation in pathogenesis and the development of novel therapeutics targeting SUMOylation. SIGNIFICANCE STATEMENT: Protein SUMOylation is one of the most prevalent post-translational modifications and plays a vital role in maintaining cellular homeostasis in response to stresses. Protein SUMOylation has been implicated in human pathogenesis, such as cancer, cardiovascular diseases, neurodegeneration, and infection. After more than a quarter century of extensive research, intriguing enigmas remain regarding the mechanism of cellular SUMOylation regulation and the therapeutic potential of targeting SUMOylation.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"75 5","pages":"979-1006"},"PeriodicalIF":19.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10127173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmacological ReviewsPub Date : 2023-09-01Epub Date: 2023-06-06DOI: 10.1124/pharmrev.123.000841
Simonides Immanuel van de Wakker, Fleur Michelle Meijers, Joost Petrus Gerardus Sluijter, Pieter Vader
{"title":"Extracellular Vesicle Heterogeneity and Its Impact for Regenerative Medicine Applications.","authors":"Simonides Immanuel van de Wakker, Fleur Michelle Meijers, Joost Petrus Gerardus Sluijter, Pieter Vader","doi":"10.1124/pharmrev.123.000841","DOIUrl":"10.1124/pharmrev.123.000841","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are cell-derived membrane-enclosed particles that are involved in physiologic and pathologic processes. EVs are increasingly being studied for therapeutic applications in the field of regenerative medicine. Therapeutic application of stem cell-derived EVs has shown great potential to stimulate tissue repair. However, the exact mechanisms through which they induce this effect have not been fully clarified. This may to a large extent be attributed to a lack of knowledge on EV heterogeneity. Recent studies suggest that EVs represent a heterogeneous population of vesicles with distinct functions. The heterogeneity of EVs can be attributed to differences in their biogenesis, and as such, they can be classified into distinct populations that can then be further subcategorized into various subpopulations. A better understanding of EV heterogeneity is crucial for elucidating their mechanisms of action in tissue regeneration. This review provides an overview of the latest insights on EV heterogeneity related to tissue repair, including the different characteristics that contribute to such heterogeneity and the functional differences among EV subtypes. It also sheds light on the challenges that hinder clinical translation of EVs. Additionally, innovative EV isolation techniques for studying EV heterogeneity are discussed. Improved knowledge of active EV subtypes would promote the development of tailored EV therapies and aid researchers in the translation of EV-based therapeutics to the clinic. SIGNIFICANCE STATEMENT: Within this review we discuss the differences in regenerative properties of extracellular vesicle (EV) subpopulations and implications of EV heterogeneity for development of EV-based therapeutics. We aim to provide new insights into which aspects are leading to heterogeneity in EV preparations and stress the importance of EV heterogeneity studies for clinical applications.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"75 5","pages":"1043-1061"},"PeriodicalIF":19.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9992102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}