Optical MaterialsPub Date : 2024-10-23DOI: 10.1016/j.optmat.2024.116320
Vasyl Stadnyk , Bohdan Andriyevsky , Ivan Pryshko , Leszek Bychto , Zenoviy Kohut , Ulrich Schade , Alexander Veber , Ljiljana Puskar , Ruslan Brezvin
{"title":"Piezo-optical properties and infrared spectra of Rb2SO4 crystals","authors":"Vasyl Stadnyk , Bohdan Andriyevsky , Ivan Pryshko , Leszek Bychto , Zenoviy Kohut , Ulrich Schade , Alexander Veber , Ljiljana Puskar , Ruslan Brezvin","doi":"10.1016/j.optmat.2024.116320","DOIUrl":"10.1016/j.optmat.2024.116320","url":null,"abstract":"<div><div>The paper deals with the dispersion dependences of birefringence Δ<em>n</em><sub>i</sub>(λ) of the mechanically free and uniaxially clamped Rb<sub>2</sub>SO<sub>4</sub> crystal along different crystal-physical axes at room temperature. It was found that the crystal has an insignificant normal dispersion d(Δ<em>n</em><sub>x</sub>)/dλ χ ≤ 0, and uniaxial compressions σ<sub>m</sub> do not change the character, but only the slope of the dependences Δ<em>n</em><sub>i</sub>(λ). Uniaxial loads shift the position of the optical isotropic point both in the short-wavelength (σ<sub>z</sub>) and in the long-wavelength part of the spectrum (σ<sub>y</sub>). The spectral dependences of the combined piezo-optical coefficients <span><math><mrow><msubsup><mi>π</mi><mrow><mi>k</mi><mi>m</mi></mrow><mi>o</mi></msubsup><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> were calculated and it was found that they have an insignificant dispersion dependence, and the absolute values of the piezo-optical coefficients <span><math><mrow><msubsup><mi>π</mi><mn>31</mn><mi>o</mi></msubsup></mrow></math></span> and <span><math><mrow><msubsup><mi>π</mi><mn>21</mn><mi>o</mi></msubsup></mrow></math></span> are equal to each other in the vicinity of the optical isotropic point at the light wavelength λ = 490 nm. The reflection spectra of Rb<sub>2</sub>SO<sub>4</sub> crystals were measured in the infrared range at room temperature using FT-IR spectrometer and synchrotron radiation and the corresponding <em>ab initio</em> calculations of the phonon partial density of states and the dielectric function were performed.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116320"},"PeriodicalIF":3.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optical MaterialsPub Date : 2024-10-23DOI: 10.1016/j.optmat.2024.116321
Stephen Jose, Selvi Krishnan, Bhuvana K. Periyasamy, R. Joseph Bensingh
{"title":"Inducing Multicolour emission in MEH-PPV/TiO2 nanocomposites","authors":"Stephen Jose, Selvi Krishnan, Bhuvana K. Periyasamy, R. Joseph Bensingh","doi":"10.1016/j.optmat.2024.116321","DOIUrl":"10.1016/j.optmat.2024.116321","url":null,"abstract":"<div><div>Fluorescence-based polymers have a wide variety of applications such as light-emitting diodes, optoelectronics, and biosensors. The present study endeavors towards the effect of TiO<sub>2</sub> nanoparticles (calcined at various temperature) on the emission of Poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) and to induce multicolour emission. The TiO<sub>2</sub> nanoparticles synthesized by sol-gel method were calcined at 400 °C and 600 °C. In situ polymerization was adopted to synthesize MEH-PPV/TiO<sub>2</sub> nanocomposites and the structural characteristics of the nanocomposites were studied using Fourier transformed Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The photo-physical characteristics of the nanocomposites were investigated using UV–Visible spectroscopy, Photoluminescence spectroscopy, and Fluorescence microscopy. TiO<sub>2</sub> nanoparticles calcined at 400 °C demonstrates anatase phase, whereas the particles calcined at 700 °C exhibits mixed phase of rutile and anatase. The study reveal that calcination temperature has a strong impact on the morphology of the synthesized nanoparticles. The photoluminescence spectra reveal that the incorporation of TiO<sub>2</sub> nanoparticles enhances the red orange emission intensity of MEH-PPV, additionally exhibits emission at multiple wavelengths. Fluorescence microscopy evidences multiple colour emission from MEH-PPV/TiO<sub>2</sub> nanocomposites. The multiple emission in the polymer nanocomposite is arised from the oxygen vacancies present in anatase and rutile phases of TiO<sub>2</sub> nanoparticle.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116321"},"PeriodicalIF":3.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optical MaterialsPub Date : 2024-10-22DOI: 10.1016/j.optmat.2024.116305
Gergely Tarsoly , Jae-Yun Lee , Sung-Jin Kim
{"title":"Improving the photoswitching performance of a transistor with amorphous metal oxide semiconductor thin film by a gradient annealing approach","authors":"Gergely Tarsoly , Jae-Yun Lee , Sung-Jin Kim","doi":"10.1016/j.optmat.2024.116305","DOIUrl":"10.1016/j.optmat.2024.116305","url":null,"abstract":"<div><div>Metal oxides are attracting attention as electronic mate rials in research and industry. Thin films of amorphous indium gallium zinc oxide (a-IGZO) exhibit low absorbance in the visible spectrum, making them ideal components in transparent electronics. To widen the scope of use for thin film transistor (TFT) devices based on a-IGZO in on-chip sensing applications, photoresponsive behavior has been achieved by proper engineering of the active layers by either introducing a photosensitive top layer or using a method to generate localized states inside the band gap. In this paper, we propose a bilayer structured with the use of thermal annealing of a-IGZO film at different temperatures. Thermal annealing has been shown to improve the electrical performance of the TFT devices because of the improved film quality but negatively affects the photoresponsivity by removing tarp sites that play an important role in both charge generation and photomultiplication via the photogating effect. Therefore, here we propose an a-IGZO film with a high temperature-annealed bottom layer and pristine top layer. The bottom layer plays a vital role in the charge transport behavior, resulting in a low threshold voltage and subthreshold swing similar to the device with a fully annealed film, while the photoresponse of the device is driven by the higher density of gap states in the pristine top layer. This proposed method is advantageous to previously published procedures due to the simplicity of using no additional materials and complex steps to introduce trap sites into the photoactive layer, but only differential annealing temperature.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116305"},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optical MaterialsPub Date : 2024-10-22DOI: 10.1016/j.optmat.2024.116307
M. Rosales , J. Oliva , H. Desirena , P. Salas
{"title":"Effect of Urea and Thiourea on the color emission of (YxBi1-x)2Zr2O7:Er3+,Yb3+ upconversion phosphors","authors":"M. Rosales , J. Oliva , H. Desirena , P. Salas","doi":"10.1016/j.optmat.2024.116307","DOIUrl":"10.1016/j.optmat.2024.116307","url":null,"abstract":"<div><div>This study reports the upconversion emission properties of Bi<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>:Er,Yb (BiZr), Y<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>:Er,Yb (YZr) and (Y<sub>0.25</sub>Bi<sub>0.75</sub>)<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>:Er,Yb (Y<sub>0.25</sub>Bi<sub>0.75</sub>Zr) phosphors. All those samples were synthesized with fixed Er and Yb concentrations of 2 and 20 mol%, respectively. The analysis by X-ray diffraction revealed that the YZr sample had cubic phase, the BiZr sample had a mixture of monoclinic/cubic phases and the Y<sub>0.25</sub>Bi<sub>0.75</sub>Zr sample had a mixture of all the phases mentioned above. In addition, the analysis by electron microscopy indicated that all the samples are formed by mixtures of particles with irregular and quasi-spherical shapes. The YZr, BiZr and Y<sub>0.25</sub>Bi<sub>0.75</sub>Zr samples were synthesized using urea or thiourea as fuel and an annealing temperature of 775 or 850 °C. For any fuel, the samples produced green (525 and 548 nm) and red (655 nm) emissions by upconversion after exciting them with 975 nm. Interestingly, the Y<sub>0.25</sub>Bi<sub>0.75</sub>Zr sample always presented the most intense emission for any fuel or temperature of synthesis. Interestingly, the Y<sub>0.25</sub>Bi<sub>0.75</sub>Zr sample made with thiourea had a green emission intensity 49 % higher than that made with urea, but the red emission intensity was 25 % lower in the sample made with thiourea. Color emission tuning was observed in the samples under certain conditions: 1) the color emission for the BiZr sample (made with urea) was changed from yellow to orange-red after increasing the annealing temperature from 775 or 850 °C and 2) the YZr sample (annealed at 775 °C) changed its color emission from green to red after using thiourea instead of urea. Surprisingly, the Y<sub>0.25</sub>Bi<sub>0.75</sub>Zr sample always maintained its green emission despite the change of fuel or annealing temperature. In general, the results of this research demonstrate that different fuels or synthesis temperatures can be used to enhance the upconversion emission or to tune the emission color. This avoids the use of high concentrations of rare earths to produce any of these effects as previously reported in the literature.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116307"},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reactive spark plasma sintering and luminescence properties of Gd2O2S:Tb nanocrystalline phosphor","authors":"O.O. Shichalin , Yun Shi , A.A. Vornovskikh , Z.E. Kornakova , A.V. Amosov , A.A. Belov , A.I. Seroshtan , N.P. Ivanov , P.A. Marmaza , I. Yu Buravlev , D.S. Starev , D.Yu Kosyanov , E.K. Papynov","doi":"10.1016/j.optmat.2024.116312","DOIUrl":"10.1016/j.optmat.2024.116312","url":null,"abstract":"<div><div>Gd<sub>2</sub>O<sub>2</sub>S:Tb is promising for energy-efficient lighting and display applications. This work explores the use of reactive spark plasma sintering (SPS) to synthesis Gd<sub>2</sub>O<sub>2</sub>S:Tb nanocrystalline phosphor. It allows to significantly simplify the technological process in comparison with traditional multi-stage liquid-phase synthesis. As-sintered Gd<sub>2</sub>O<sub>2</sub>S:Tb demonstrated average crystallite size of 26 nm and secondary particle size of 26 μm. Bright green emission occurs at 545 nm under UV excitation of 245 nm. Average fluorescence lifetime was 0.656 ms. Further consolidation of the Gd<sub>2</sub>O<sub>2</sub>S:Tb prepared via reactive SPS can also be expected to yield highly dense ceramics. The innovative reactive synthesis strategies provide valuable insights into the design and development of high-performance luminescent ceramics.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116312"},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optical MaterialsPub Date : 2024-10-22DOI: 10.1016/j.optmat.2024.116304
Shaan Bibi Jaffri , Khuram Shahzad Ahmad , Isaac Abrahams , Adel El-marghany
{"title":"Microwave fostered sustainable synthesis of Nb2O5 – ZnO nanomaterial for efficiency amplification in high performing energy systems","authors":"Shaan Bibi Jaffri , Khuram Shahzad Ahmad , Isaac Abrahams , Adel El-marghany","doi":"10.1016/j.optmat.2024.116304","DOIUrl":"10.1016/j.optmat.2024.116304","url":null,"abstract":"<div><div>This study presents the first report on the microwave approach combined with improved sustainable synthesis of zinc oxide (ZnO) and niobium oxide (Nb<sub>2</sub>O<sub>5</sub>) to generate Nb<sub>2</sub>O5 – ZnO nanospheres. Following the development of nanospheres, the band gap energy decreased to 3.25 eV, and the average crystallite size was found to be 62.49 nm. The nanospheres had a mixed crystalline phase of hexagonal and orthogonal crystals. This material has demonstrated a predisposition towards hydrogen production in the electro-catalytic tests, with a minimal overpotential (η<sub>HER</sub>) and a Tafel slope values of 127 mV and 125.6 mV dec<sup>−1</sup>. Furthermore, nanospheres decorated electrode remained intact in electrolyte environment for 1500 min and exhibited profound charge storage of 204.93 F g<sup>−1</sup> 15 % PV efficiency was attained by the air-processed perovskite solar cell thanks to the interface passivation functionality. The commendable performance of the binary Nb<sub>2</sub>O<sub>5</sub> – ZnO nanospheres have validated their prospects for practical applications.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116304"},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optical MaterialsPub Date : 2024-10-22DOI: 10.1016/j.optmat.2024.116310
Soad M. Tadros , Mohamed El-Kinawy , R. Kamal , M. Saif , Nabil El-Faramawy
{"title":"Synthesis and thermoluminescence characterization of Ba₆Y₂W₃O₁₈ perovskite nanosensors for dosimetry","authors":"Soad M. Tadros , Mohamed El-Kinawy , R. Kamal , M. Saif , Nabil El-Faramawy","doi":"10.1016/j.optmat.2024.116310","DOIUrl":"10.1016/j.optmat.2024.116310","url":null,"abstract":"<div><div>Through the citrate-assisted sol-gel method, barium gadolinium tungstate (Ba<sub>6</sub>Y<sub>2</sub>W<sub>3</sub>O<sub>18</sub>) perovskite samples were synthesized, and their luminescence properties were investigated. Through X-ray diffraction (XRD) the crystal structure of the prepared samples was examined. The tunnelling electron microscopy (TEM) analysis has confirmed the agglomeration of the nanoparticles into rods with an average diameter and length of 71 and 214 nm, respectively. The thermoluminescence (TL) properties were investigated by; first, estimating the number of composing TL components using both experimental and computational methods; second, studying the dose-response of the glow curves in response to the irradiated beta dose. The third step in the study of the TL properties was to assess the reusability of the prepared samples in TL dosimetry and the fourth step was to estimate the minimum detectable dose of the phosphor samples. The Computerized Glow Curve Deconvolution (CGCD) method was then used to extract the kinetic parameters of the composing TL peaks.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116310"},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High transparent glass of germanate-borate-tellurite modified by different concentration of bismuth oxide for optical and radiation shielding applications","authors":"K.A. Mahmoud , M.I. Sayyed , M.H.A. Mhareb , Abed Jawad Kadhim , Kawa M. Kaky , M. Kh Hamad , S.O. Baki","doi":"10.1016/j.optmat.2024.116319","DOIUrl":"10.1016/j.optmat.2024.116319","url":null,"abstract":"<div><div>The current investigation studied one of the high-density heavy metal oxides (Bi<sub>2</sub>O<sub>3</sub>) having density = 8.9 g/cm³, which was utilized to improve structural and optical features of the B<sub>2</sub>O<sub>3</sub>–TeO<sub>2</sub>-GeO<sub>2</sub>-MgO glass system. Three high transparent glasses with a chemical formula of 35B<sub>2</sub>O<sub>3</sub>–20TeO<sub>2</sub>-10GeO<sub>2</sub>-35MgO-xBi<sub>2</sub>O<sub>3</sub> (x = 5, 10, and 15 mol %) were fabricated by melting at 1100 °C for 20 min and annealing at 400 °C for 5 h. X-ray diffraction measurements for the Bi5 sample, containing 5 mol % Bi<sub>2</sub>O<sub>3</sub>, were obtained at the range of 10°–80° to inspect the structural characteristics of the made glasses. Optical absorption was employed and recorded for Bi5, Bi10, and Bi15 samples at wavelength range 300–1000 nm to examine the optical properties, including optical band gap. Using Makishima and Mackenzie methods, the mechanical features of the glass samples were assessed. Nuclear library ENDF/B-VI.8 is coupled to the MCNP-5 code and is used to study and simulate the prepared Bi glass sample shielding parameters. The ionizing absorption properties for the prepared Bi5, Bi10, and Bi15 samples were found to be changed because of many circumstances like the photon energy (Eγ, MeV), and chemical compositions (Bi<sub>2</sub>O<sub>3</sub> content (mol. %). The increased layer thickness of glass between 25 and 200 mm enhances the RPE values at 0.6 MeV over the range of 16.31–50.93 % (Bi5 glass sample), 18.68–56.26 % (Bi10 glass sample), and 20.80–60.66 % (Bi15 glass sample).</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116319"},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optical MaterialsPub Date : 2024-10-22DOI: 10.1016/j.optmat.2024.116297
Anjali Sharma, B. Karthikeyan
{"title":"Optical and sign-flipping nonlinear optical properties of NiO/PMMA/PANI nanocomposite films","authors":"Anjali Sharma, B. Karthikeyan","doi":"10.1016/j.optmat.2024.116297","DOIUrl":"10.1016/j.optmat.2024.116297","url":null,"abstract":"<div><div>In this study, we introduce an efficient nanocomposite system to enhance optical properties of Nickel oxide (NiO) integrated with two polymers matrix. NiO nanoparticles is prepared using chemical co-precipitation method and its nanocomposite films (NCFs) were prepared with poly methyl methacrylate (PMMA) and polyaniline (PANI) using drop-casting method on glass substrate and was optimized by changing the concentration of NiO. The prepared NCFs were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), ultraviolet (UV)-visible absorption spectroscopy, photoluminescence (PL) spectroscopy and X-ray photoelectron (XPS) spectroscopy. The open-aperture z-scan method is employed for nonlinear optical investigations, utilizing a nanosecond pulsed laser with a wavelength of 532 nm for excitation. The findings indicate that the NCFs exhibit sign-flipping nonlinear behavior, indicating a transition from saturable absorption to reverse saturable absorption. This suggests that our NCFs exhibit optical limiting properties and potential for applications in photonic devices, such as optical switches and laser protection systems.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116297"},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultrathin SiONC passivation of c-Si by UHV thermal annealing in O₂/N₂: Chemical composition, morphology, and photoluminescence insights","authors":"Brahim Halitim , M'hamed Guezzoul , Abdelkader Nouri , Chewki Zegadi , M'hammed Bouslama","doi":"10.1016/j.optmat.2024.116311","DOIUrl":"10.1016/j.optmat.2024.116311","url":null,"abstract":"<div><div>This study investigates the impact of Ultra-High Vacuum (UHV) Thermal annealing in a N₂/O₂ atmosphere on the passivation of Ar ion etched crystalline silicon (c-Si) surfaces. A comprehensive analysis of the resulting ultrathin Silicon OxyNitride Carbide layer (SiONC) was conducted using X-ray Photoelectron Spectroscopy (XPS), Ultra-Violet Spectroscopy (UPS), Photoluminescence Spectroscopy (PL), and Atomic Force Microscopy (AFM). XPS revealed a significant transformation in chemical composition from a carbon-rich contaminated surface SiO<sub>1.02</sub>C<sub>2.98</sub> to an oxygen- and nitrogen-containing passivated layer SiO<sub>0.13</sub>N<sub>0.10</sub>C<sub>0.28</sub>. UPS measurements elucidated changes in the electronic structure and Fermi level position at the c-Si/SiONC interface. AFM imaging demonstrated the formation of non-uniform SiONC islands, influencing surface morphology. Notably, PL spectroscopy indicated enhanced orange and red luminescence with energies of 2.0 and 1.73 eV, respectively, attributed to the SiONC layer. The enhanced luminescence, coupled with improved thermal stability and oxidation resistance, positions the SiONC layer as a promising material for advancing the performance of silicon-based optoelectronic devices, such as solar cells and light-emitting diodes (LEDs). This study provides fundamental insights into the correlation between the chemical, electronic, and morphological properties of the SiONC layer and its potential for improving c-Si device performance.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116311"},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}