Nucleic acid therapeutics最新文献

筛选
英文 中文
Inhibition of Epidermal Growth Factor Receptor Signaling by Antisense Oligonucleotides as a Novel Approach to Epidermal Growth Factor Receptor Inhibition. 反义寡核苷酸对表皮生长因子受体信号传导的抑制作用——一种抑制表皮生长因子接收器的新方法。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2022-10-01 Epub Date: 2022-07-20 DOI: 10.1089/nat.2021.0101
Thushara W Madanayake, Eric A Welsh, Lancia N F Darville, John M Koomen, Charles E Chalfant, Eric B Haura, Timothy J Robinson
{"title":"Inhibition of Epidermal Growth Factor Receptor Signaling by Antisense Oligonucleotides as a Novel Approach to Epidermal Growth Factor Receptor Inhibition.","authors":"Thushara W Madanayake,&nbsp;Eric A Welsh,&nbsp;Lancia N F Darville,&nbsp;John M Koomen,&nbsp;Charles E Chalfant,&nbsp;Eric B Haura,&nbsp;Timothy J Robinson","doi":"10.1089/nat.2021.0101","DOIUrl":"10.1089/nat.2021.0101","url":null,"abstract":"<p><p>We report a novel method to inhibit epidermal growth factor receptor (EGFR) signaling using custom morpholino antisense oligonucleotides (ASOs) to drive expression of dominant negative mRNA isoforms of EGFR by ASO-induced exon skipping within the transmembrane (16) or tyrosine kinase domains (18 and 21). <i>In vivo</i> ASO formulations induced >95% exon skipping in several models of nonsmall cell lung cancer (NSCLC) and were comparable in efficacy to erlotinib in reducing colony formation, cell viability, and migration in EGFR mutant NSCLC (PC9). However, unlike erlotinib, ASOs maintained their efficacy in both erlotinib-resistant subclones (PC9-GR) and wild-type overexpressing EGFR models (H292), in which erlotinib had no significant effect. The most dramatic ASO-induced phenotype resulted from targeting the EGFR kinase domain directly, which resulted in maximal inhibition of phosphorylation of EGFR, Akt, and Erk in both PC9 and PC9GR cells. Phosphoproteomic mass spectrometry confirmed highly congruent impacts of exon 16-, 18-, and 21-directed ASOs compared with erlotinib on PC9 genome-wide cell signaling. Furthermore, <i>EGFR</i>-directed ASOs had no impact in EGFR-independent NSCLC models, confirming an EGFR-specific therapeutic mechanism. Further exploration of synergy of ASOs with existing tyrosine kinase inhibitors may offer novel clinical models to improve EGFR-targeted therapies for both mutant and wild-type NSCLC patients.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"391-400"},"PeriodicalIF":4.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595651/pdf/nat.2021.0101.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40526775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host-Directed Targeting of LincRNA-MIR99AHG Suppresses Intracellular Growth of Mycobacterium tuberculosis. 宿主靶向LincRNA-MIR99AHG抑制结核分枝杆菌细胞内生长
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2022-10-01 DOI: 10.1089/nat.2022.0009
Lorna Gcanga, Ousman Tamgue, Mumin Ozturk, Shandre Pillay, Raygaana Jacobs, Julius Ebua Chia, Stanley Kimbung Mbandi, Malika Davids, Keertan Dheda, Sebastian Schmeier, Tanvir Alam, Sugata Roy, Harukazu Suzuki, Frank Brombacher, Reto Guler
{"title":"Host-Directed Targeting of LincRNA-MIR99AHG Suppresses Intracellular Growth of <i>Mycobacterium tuberculosis</i>.","authors":"Lorna Gcanga,&nbsp;Ousman Tamgue,&nbsp;Mumin Ozturk,&nbsp;Shandre Pillay,&nbsp;Raygaana Jacobs,&nbsp;Julius Ebua Chia,&nbsp;Stanley Kimbung Mbandi,&nbsp;Malika Davids,&nbsp;Keertan Dheda,&nbsp;Sebastian Schmeier,&nbsp;Tanvir Alam,&nbsp;Sugata Roy,&nbsp;Harukazu Suzuki,&nbsp;Frank Brombacher,&nbsp;Reto Guler","doi":"10.1089/nat.2022.0009","DOIUrl":"https://doi.org/10.1089/nat.2022.0009","url":null,"abstract":"<p><p>Tuberculosis (TB) caused by <i>Mycobacterium tuberculosis</i> (Mtb) kills 1.6 million people worldwide every year, and there is an urgent need for targeting host-pathogen interactions as a strategy to reduce mycobacterial resistance to current antimicrobials. Noncoding RNAs are emerging as important regulators of numerous biological processes and avenues for exploitation in host-directed therapeutics. Although long noncoding RNAs (lncRNAs) are abundantly expressed in immune cells, their functional role in gene regulation and bacterial infections remains understudied. In this study, we identify an immunoregulatory long intergenic noncoding RNA, lincRNA-MIR99AHG, which is upregulated in mouse and human macrophages upon IL-4/IL-13 stimulation and downregulated after clinical Mtb HN878 strain infection and in peripheral blood mononuclear cells from active TB patients. To evaluate the functional role of lincRNA-MIR99AHG, we used antisense locked nucleic acid (LNA) GapmeR-mediated antisense oligonucleotide (ASO) lncRNA knockdown experiments. Knockdown of lincRNA-MIR99AHG with ASOs significantly reduced intracellular Mtb growth in mouse and human macrophages and reduced pro-inflammatory cytokine production. In addition, <i>in vivo</i> treatment of mice with MIR99AHG ASOs reduced the mycobacterial burden in the lung and spleen. Furthermore, in macrophages, lincRNA-MIR99AHG is translocated to the nucleus and interacts with high affinity to hnRNPA2/B1 following IL-4/IL-13 stimulation and Mtb HN878 infection. Together, these findings identify lincRNA-MIR99AHG as a positive regulator of inflammation and macrophage polarization to promote Mtb growth and a possible target for adjunctive host-directed therapy against TB.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"32 5","pages":"421-437"},"PeriodicalIF":4.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613730/pdf/nat.2022.0009.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10550983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Binary Antisense Oligonucleotide Agent for Cancer Marker-Dependent Degradation of Targeted RNA. 用于肿瘤标志物依赖性靶向RNA降解的二元反义寡核苷酸试剂。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2022-10-01 Epub Date: 2022-07-18 DOI: 10.1089/nat.2021.0108
Valeriia S Drozd, Ahmed A Eldeeb, Dmitry M Kolpashchikov, Daria D Nedorezova
{"title":"Binary Antisense Oligonucleotide Agent for Cancer Marker-Dependent Degradation of Targeted RNA.","authors":"Valeriia S Drozd,&nbsp;Ahmed A Eldeeb,&nbsp;Dmitry M Kolpashchikov,&nbsp;Daria D Nedorezova","doi":"10.1089/nat.2021.0108","DOIUrl":"https://doi.org/10.1089/nat.2021.0108","url":null,"abstract":"<p><p>Antisense oligonucleotide technology is one of the most successful gene therapy (GT) approaches. However, low selectivity of antisense agents limits their application as anticancer drugs. To achieve activation of antisense agent selectively in cancer cells, herein, we propose the concept of binary antisense oligonucleotide (biASO) agent. biASO recognizes an RNA sequence of a gene associated with cancer development (marker) and then activates RNase H-dependent cleavage of a targeted messenger RNA. biASO was optimized to produce only the background cleavage of the targeted RNA in the absence of the activator. The approach lays the foundation for the development of highly selective and efficient GT agents.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"412-420"},"PeriodicalIF":4.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40628325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antisense Oligonucleotide Rescue of Deep-Intronic Variants Activating Pseudoexons in the 6-Pyruvoyl-Tetrahydropterin Synthase Gene. 激活6-丙酮酰四氢蝶呤合酶基因假外显子的深内含子变异的反义寡核苷酸修复。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2022-10-01 Epub Date: 2022-07-12 DOI: 10.1089/nat.2021.0066
Ainhoa Martínez-Pizarro, Fátima Leal, Lise Lolle Holm, Thomas K Doktor, Ulrika S S Petersen, María Bueno, Beat Thöny, Belén Pérez, Brage S Andresen, Lourdes R Desviat
{"title":"Antisense Oligonucleotide Rescue of Deep-Intronic Variants Activating Pseudoexons in the 6-Pyruvoyl-Tetrahydropterin Synthase Gene.","authors":"Ainhoa Martínez-Pizarro,&nbsp;Fátima Leal,&nbsp;Lise Lolle Holm,&nbsp;Thomas K Doktor,&nbsp;Ulrika S S Petersen,&nbsp;María Bueno,&nbsp;Beat Thöny,&nbsp;Belén Pérez,&nbsp;Brage S Andresen,&nbsp;Lourdes R Desviat","doi":"10.1089/nat.2021.0066","DOIUrl":"https://doi.org/10.1089/nat.2021.0066","url":null,"abstract":"<p><p>We report two new 6-pyruvoyl-tetrahydropterin synthase splicing variants identified through genomic sequencing and transcript analysis in a patient with tetrahydrobiopterin deficiency, presenting with hyperphenylalaninemia and monoamine neurotransmitter deficiency. Variant c.243 + 3A>G causes exon 4 skipping. The deep-intronic c.164-672C>T variant creates a potential 5' splice site that leads to the inclusion of four overlapping pseudoexons, corresponding to exonizations of an antisense short interspersed nuclear element <i>AluSq</i> repeat sequence. Two of the identified pseudoexons have been reported previously, activated by different deep-intronic variants, and were also detected at residual levels in control cells. Interestingly, the predominant pseudoexon is nearly identical to a disease causing activated pseudoexon in the <i>F8</i> gene, with the same 3' and 5' splice sites. Splice switching antisense oligonucleotides (SSOs) were designed to hybridize with splice sites and/or predicted binding sites for regulatory splice factors. Different SSOs corrected the aberrant pseudoexon inclusion, both in minigenes and in fibroblasts from patients carrying the new variant c.164-672C>T or the previously described c.164-716A>T. With SSO treatment PTPS protein was recovered, illustrating the therapeutic potential of the approach, for patients with different pseudoexon activating variants in the region. In addition, the natural presence of pseudoexons in the wild type context suggests the possibility of applying the antisense strategy in patients with hypomorphic <i>PTS</i> variants with the purpose of upregulating their expression to increase overall protein and activity.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"378-390"},"PeriodicalIF":4.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40521384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Structural Fingerprinting of siRNA Therapeutics by Solution NMR Spectroscopy. 用溶液核磁共振光谱技术分析siRNA疗法的结构指纹图谱。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2022-08-01 DOI: 10.1089/nat.2021.0098
Owen B Becette, Anh Tran, Jace W Jones, John P Marino, Robert G Brinson
{"title":"Structural Fingerprinting of siRNA Therapeutics by Solution NMR Spectroscopy.","authors":"Owen B Becette,&nbsp;Anh Tran,&nbsp;Jace W Jones,&nbsp;John P Marino,&nbsp;Robert G Brinson","doi":"10.1089/nat.2021.0098","DOIUrl":"https://doi.org/10.1089/nat.2021.0098","url":null,"abstract":"<p><p>Nucleic acids are an increasingly popular platform for the development of biotherapeutics to treat a wide variety of illnesses, including diseases where traditional drug development efforts have failed. To date, there are 14 short oligonucleotide therapeutics and 2 messenger RNA (mRNA) vaccines approved by the U.S. Food and Drug Administration (FDA), which demonstrates the potential of nucleic acids as a platform for the development of safe and effective medicines and vaccines. Despite the increasing popularity of nucleic acid-based drugs, there has been a paucity of high-resolution structural techniques applied to rigorously characterize these molecules during drug development. Here, we present application of nuclear magnetic resonance (NMR) methods to structurally \"fingerprint\" short oligonucleotide therapeutics at natural isotope abundance under full formulation conditions. The NMR methods described herein leverage signals arising from the native structural features of nucleic acids, including imino, aromatic, and ribose resonances, in addition to non-native chemistries, such as 2'-fluoro (2'-F), 2'-<i>O</i>-methyl (2'-OMe), and phosphorothioate (PS) modifications, introduced during drug development. We demonstrate the utility of the NMR methods to structurally \"fingerprint\" a model short interfering RNA (siRNA) and a sample that simulated the drug product Givosiran. We anticipate broad applicability of the NMR methods to other nucleic acid-based therapeutics due to the generalized nature of the approach and ability to monitor many quality attributes simultaneously.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"32 4","pages":"267-279"},"PeriodicalIF":4.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416564/pdf/nat.2021.0098.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10288985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Exon Skipping Through Chimeric Antisense U1 snRNAs to Correct Retinitis Pigmentosa GTPase-Regulator (RPGR) Splice Defect. 嵌合反义U1 snrna外显子跳变纠正视网膜色素变性GTPase-Regulator (RPGR)剪接缺陷。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2022-08-01 Epub Date: 2022-02-14 DOI: 10.1089/nat.2021.0053
Giuseppina Covello, Gehan H Ibrahim, Niccolò Bacchi, Simona Casarosa, Michela Alessandra Denti
{"title":"Exon Skipping Through Chimeric Antisense <i>U1</i> snRNAs to Correct Retinitis Pigmentosa GTPase-Regulator (<i>RPGR</i>) Splice Defect.","authors":"Giuseppina Covello,&nbsp;Gehan H Ibrahim,&nbsp;Niccolò Bacchi,&nbsp;Simona Casarosa,&nbsp;Michela Alessandra Denti","doi":"10.1089/nat.2021.0053","DOIUrl":"https://doi.org/10.1089/nat.2021.0053","url":null,"abstract":"<p><p>Inherited retinal dystrophies are caused by mutations in more than 250 genes, each of them carrying several types of mutations that can lead to different clinical phenotypes. Mutations in <i>Retinitis Pigmentosa GTPase-Regulator</i> (<i>RPGR</i>) cause X-linked Retinitis pigmentosa (RP). A nucleotide substitution in intron 9 of <i>RPGR</i> causes the increase of an alternatively spliced isoform of the mature mRNA, bearing exon 9a (E9a). This introduces a stop codon, leading to truncation of the protein. Aiming at restoring impaired gene expression, we developed an antisense RNA-based therapeutic approach for the skipping of <i>RPGR</i> E9a. We designed a set of specific <i>U1</i> antisense snRNAs (U1_asRNAs) and tested their efficacy <i>in vitro</i>, upon transient cotransfection with <i>RPGR</i> minigene reporter systems in HEK-293T, 661W, and PC-12 cell lines. We thus identified three chimeric U1_asRNAs that efficiently mediate E9a skipping, correcting the genetic defect. Unexpectedly, the U1-5'antisense construct, which exhibited the highest exon-skipping efficiency in PC-12 cells, induced E9a inclusion in HEK-293T and 661W cells, indicating caution in the choice of preclinical model systems when testing RNA splicing-correcting therapies. Our data provide a proof of principle for the application of U1_snRNA exon skipping-based approach to correct splicing defects in <i>RPGR</i>.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"333-349"},"PeriodicalIF":4.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e5/1a/nat.2021.0053.PMC9416563.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39801256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NAT10 and DDX21 Proteins Interact with RNase H1 and Affect the Performance of Phosphorothioate Oligonucleotides. NAT10和DDX21蛋白与RNase H1相互作用并影响硫代寡核苷酸的性能。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2022-08-01 Epub Date: 2022-07-18 DOI: 10.1089/nat.2021.0107
Lingdi Zhang, Karla D Bernardo, Timothy A Vickers, Jun Tian, Xue-Hai Liang, Stanley T Crooke
{"title":"NAT10 and DDX21 Proteins Interact with RNase H1 and Affect the Performance of Phosphorothioate Oligonucleotides.","authors":"Lingdi Zhang,&nbsp;Karla D Bernardo,&nbsp;Timothy A Vickers,&nbsp;Jun Tian,&nbsp;Xue-Hai Liang,&nbsp;Stanley T Crooke","doi":"10.1089/nat.2021.0107","DOIUrl":"https://doi.org/10.1089/nat.2021.0107","url":null,"abstract":"<p><p>RNase H1-dependent phosphorothioate oligonucleotides (PS-ASOs) have been developed to treat various diseases through specific degradation of target RNAs. Although many factors or features of RNA and PS-ASOs have been demonstrated to affect antisense activity of PS-ASOs, little is known regarding the roles of RNase H1-associated proteins in PS-ASO performance. In this study, we report that two nucleolar proteins, NAT10 and DDX21, interact with RNase H1 and affect the potency and safety of PS-ASOs. The interactions of these two proteins with RNase H1 were determined using BioID proximity labeling in cells and confirmed biochemically. Reduction of NAT10 and DDX21 decreased PS-ASO activity in cells, and purified NAT10 and DDX21 proteins enhanced RNase H1 cleavage rates, indicating that these two proteins facilitate RNase H1 endoribonuclease activity. Consistently, reduction of these proteins increased the levels of R-loops, and impaired pre-rRNA processing. In addition, reduction of the two proteins increased the cytotoxicity of toxic PS-ASOs, and treatment of toxic PS-ASOs also altered the localization of these proteins. Together, this study shows for the first time that NAT10 and DDX21 interact with RNase H1 protein and enhance its enzymatic activity, contributing to the potency and safety of PS-ASOs.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"280-299"},"PeriodicalIF":4.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9f/04/nat.2021.0107.PMC9416547.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40606383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Altered Biodistribution and Hepatic Safety Profile of a Gapmer Antisense Oligonucleotide Bearing Guanidine-Bridged Nucleic Acids. 含胍桥接核酸的Gapmer反义寡核苷酸的生物分布和肝脏安全性的改变。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2022-06-01 Epub Date: 2022-01-24 DOI: 10.1089/nat.2021.0034
Takashi Sasaki, Yoko Hirakawa, Fumiko Yamairi, Takashi Kurita, Karin Murahashi, Hirokazu Nishimura, Norihiko Iwazaki, Hidenori Yasuhara, Takashi Tateoka, Tetsuya Ohta, Satoshi Obika, Jun Kotera
{"title":"Altered Biodistribution and Hepatic Safety Profile of a Gapmer Antisense Oligonucleotide Bearing Guanidine-Bridged Nucleic Acids.","authors":"Takashi Sasaki,&nbsp;Yoko Hirakawa,&nbsp;Fumiko Yamairi,&nbsp;Takashi Kurita,&nbsp;Karin Murahashi,&nbsp;Hirokazu Nishimura,&nbsp;Norihiko Iwazaki,&nbsp;Hidenori Yasuhara,&nbsp;Takashi Tateoka,&nbsp;Tetsuya Ohta,&nbsp;Satoshi Obika,&nbsp;Jun Kotera","doi":"10.1089/nat.2021.0034","DOIUrl":"https://doi.org/10.1089/nat.2021.0034","url":null,"abstract":"<p><p>Guanidine-bridged nucleic acid (GuNA) is a novel 2',4'-bridged nucleic acid/locked nucleic acid (2',4'-BNA/LNA) analog containing cations that exhibit strong affinity for target RNA and superior nuclease resistance. In this study, <i>Malat1</i> antisense oligonucleotide (ASO) bearing GuNA was evaluated for target knockdown (KD) activity and tolerability. The GuNA ASO did not interfere with RNase H recruitment on the target RNA/ASO heteroduplex and did show potent target KD activity in a skeletal muscle-derived cell line equivalent to that of the LNA ASO under gymnotic conditions, whereas almost no KD activity was observed in a hepatocyte-derived cell line. The GuNA ASO exhibited potent KD activity in various tissues; the KD activity in the skeletal muscle was equivalent with that of the LNA ASO, but the KD activities in the liver and kidney were clearly lower compared with the LNA ASO. In addition, despite the higher accumulation of the GuNA ASO in the liver, levels of aspartate aminotransferase and alanine aminotransferase with the GuNA ASO administration were not elevated compared with those induced by the LNA ASO. Our data indicate that the GuNA ASO is tolerable and exhibits unique altered pharmacological activities in comparison with the LNA ASO in terms of the relative effect between liver and skeletal muscle.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"177-184"},"PeriodicalIF":4.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39944691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Allele-Selective LNA Gapmers for the Treatment of Fibrodysplasia Ossificans Progressiva Knock Down the Pathogenic ACVR1R206H Transcript and Inhibit Osteogenic Differentiation. 治疗进行性骨化纤维发育不良的等位基因选择性LNA间隙子:敲低致病性ACVR1R206H转录本并抑制成骨分化
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2022-06-01 Epub Date: 2022-01-27 DOI: 10.1089/nat.2021.0009
Rika Maruyama, Quynh Nguyen, Rohini Roy Roshmi, Aleksander Touznik, Toshifumi Yokota
{"title":"Allele-Selective LNA Gapmers for the Treatment of Fibrodysplasia Ossificans Progressiva Knock Down the Pathogenic ACVR1<sup>R206H</sup> Transcript and Inhibit Osteogenic Differentiation.","authors":"Rika Maruyama,&nbsp;Quynh Nguyen,&nbsp;Rohini Roy Roshmi,&nbsp;Aleksander Touznik,&nbsp;Toshifumi Yokota","doi":"10.1089/nat.2021.0009","DOIUrl":"https://doi.org/10.1089/nat.2021.0009","url":null,"abstract":"<p><p>Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder characterized by episodic heterotopic ossification. The median life span of people with this disorder is ∼40 years, and currently, there is no effective treatment available. More than 95% of cases are caused by a recurrent mutation (c.617G>A; R206H) of Activin A receptor, type I (ACVR1)/Activin receptor-like kinase-2 (ALK2), a bone morphogenetic protein type I receptor. The mutation renders ACVR1 responsive to activin A, which does not activate wild-type ACVR1. Ectopic activation of ACVR1<sup>R206H</sup> by activin A induces heterotopic ossification. Since ACVR1<sup>R206H</sup> is a hyperactive receptor, a promising therapeutic strategy is to decrease the activity of mutated ACVR1. To accomplish this goal, we developed locked nucleic acid (LNA) gapmers. These are short DNA oligonucleotides with LNA modification at both ends. They induce targeted mRNA degradation and specific knockdown of gene expression. We demonstrated that some of these gapmers efficiently knocked down ACVR1<sup>R206H</sup> expression at RNA levels, while ACVR1<sup>WT</sup> was mostly unaffected in human FOP fibroblasts. Also, the gapmers suppressed osteogenic differentiation induced by ACVR1<sup>R206H</sup> and activin A. These gapmers may be promising drug candidates for FOP. This novel strategy will also pave the way for antisense-mediated therapy of other autosomal dominant disorders.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"185-193"},"PeriodicalIF":4.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39953711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Combining Heparin and a FX/Xa Aptamer to Reduce Thrombin Generation in Cardiopulmonary Bypass and COVID-19. 联合肝素和FX/Xa适体减少体外循环和COVID-19患者凝血酶的产生。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2022-06-01 DOI: 10.1089/nat.2021.0077
Charlene V Chabata, James W Frederiksen, Lyra B Olson, Ibtehaj A Naqvi, Sharon E Hall, Ruwan Gunaratne, Bryan D Kraft, Loretta G Que, Lingye Chen, Bruce A Sullenger
{"title":"Combining Heparin and a FX/Xa Aptamer to Reduce Thrombin Generation in Cardiopulmonary Bypass and COVID-19.","authors":"Charlene V Chabata,&nbsp;James W Frederiksen,&nbsp;Lyra B Olson,&nbsp;Ibtehaj A Naqvi,&nbsp;Sharon E Hall,&nbsp;Ruwan Gunaratne,&nbsp;Bryan D Kraft,&nbsp;Loretta G Que,&nbsp;Lingye Chen,&nbsp;Bruce A Sullenger","doi":"10.1089/nat.2021.0077","DOIUrl":"https://doi.org/10.1089/nat.2021.0077","url":null,"abstract":"<p><p>Known limitations of unfractionated heparin (UFH) have encouraged the evaluation of anticoagulant aptamers as alternatives to UFH in highly procoagulant settings such as cardiopulmonary bypass (CPB). Despite progress, these efforts have not been totally successful. We take a different approach and explore whether properties of an anticoagulant aptamer can complement UFH, rather than replace it, to address shortcomings with UFH use. Combining RNA aptamer 11F7t, which targets factor X/Xa, with UFH (or low molecular weight heparin) yields a significantly enhanced anticoagulant cocktail effective in normal and COVID-19 patient blood. This aptamer-UFH combination (1) supports continuous circulation of human blood through an <i>ex vivo</i> membrane oxygenation circuit, as is required for patients undergoing CPB and COVID-19 patients requiring extracorporeal membrane oxygenation, (2) allows for a reduced level of UFH to be employed, (3) more effectively limits thrombin generation compared to UFH alone, and (4) is rapidly reversed by the administration of protamine sulfate, the standard treatment for reversing UFH clinically following CPB. Thus, the combination of factor X/Xa aptamer and UFH has significantly improved anticoagulant properties compared to UFH alone and underscores the potential of RNA aptamers to improve medical management of acute care patients requiring potent yet rapidly reversible anticoagulation.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"32 3","pages":"139-150"},"PeriodicalIF":4.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221171/pdf/nat.2021.0077.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10158745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信