调节先天免疫反应的硫代反义寡核苷酸化学修饰的系统分析。

IF 4 2区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Adam J Pollak, Luyi Zhao, Stanley T Crooke
{"title":"调节先天免疫反应的硫代反义寡核苷酸化学修饰的系统分析。","authors":"Adam J Pollak,&nbsp;Luyi Zhao,&nbsp;Stanley T Crooke","doi":"10.1089/nat.2022.0067","DOIUrl":null,"url":null,"abstract":"<p><p>While rare, some gapmer phosphorothioate (PS) antisense oligonucleotides (ASOs) can induce a noncanonical TLR9-dependent innate immune response. In this study, we performed systematic analyses of the roles of PS ASO backbone chemistry, 2' modifications, and sequence in PS ASO induced TLR9 signaling. We found that each of these factors can contribute to altering PS ASO induced TLR9 signaling, and in some cases the effects are quite dramatic. We also found that the positioning (5' vs. 3') of a particular backbone or 2' modification within a PS ASO can affect its TLR9 signaling. Interestingly, medicinal chemical strategies that decrease TLR9 signaling for one sequence can have opposing effects on another sequence. Our results demonstrate that TLR9 signaling is highly PS ASO sequence dependent, the mechanism of which remains unknown. Despite this, we determined that placement of two mesyl phosphoramidate linkages within the PS ASO gap is the most promising strategy to mitigate PS ASO dependent TLR9 activation to enhance the therapeutic index and, therefore, further streamline PS ASO drug development.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"33 2","pages":"95-107"},"PeriodicalIF":4.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Systematic Analysis of Chemical Modifications of Phosphorothioate Antisense Oligonucleotides that Modulate Their Innate Immune Response.\",\"authors\":\"Adam J Pollak,&nbsp;Luyi Zhao,&nbsp;Stanley T Crooke\",\"doi\":\"10.1089/nat.2022.0067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While rare, some gapmer phosphorothioate (PS) antisense oligonucleotides (ASOs) can induce a noncanonical TLR9-dependent innate immune response. In this study, we performed systematic analyses of the roles of PS ASO backbone chemistry, 2' modifications, and sequence in PS ASO induced TLR9 signaling. We found that each of these factors can contribute to altering PS ASO induced TLR9 signaling, and in some cases the effects are quite dramatic. We also found that the positioning (5' vs. 3') of a particular backbone or 2' modification within a PS ASO can affect its TLR9 signaling. Interestingly, medicinal chemical strategies that decrease TLR9 signaling for one sequence can have opposing effects on another sequence. Our results demonstrate that TLR9 signaling is highly PS ASO sequence dependent, the mechanism of which remains unknown. Despite this, we determined that placement of two mesyl phosphoramidate linkages within the PS ASO gap is the most promising strategy to mitigate PS ASO dependent TLR9 activation to enhance the therapeutic index and, therefore, further streamline PS ASO drug development.</p>\",\"PeriodicalId\":19412,\"journal\":{\"name\":\"Nucleic acid therapeutics\",\"volume\":\"33 2\",\"pages\":\"95-107\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic acid therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/nat.2022.0067\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acid therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/nat.2022.0067","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

虽然罕见,一些缺口磷酸化(PS)反义寡核苷酸(ASOs)可以诱导非规范的tlr9依赖性先天免疫反应。在本研究中,我们系统分析了PS ASO主链化学、2'修饰和序列在PS ASO诱导的TLR9信号传导中的作用。我们发现,这些因素中的每一个都有助于改变PS ASO诱导的TLR9信号,在某些情况下,效果相当显著。我们还发现,PS ASO中特定主干的定位(5' vs. 3')或2'修饰可以影响其TLR9信号。有趣的是,减少一个序列的TLR9信号的药物化学策略可能对另一个序列产生相反的作用。我们的研究结果表明,TLR9信号是高度依赖于PS ASO序列的,其机制尚不清楚。尽管如此,我们确定在PS ASO间隙内放置两个甲酰基磷酰胺键是最有希望的策略,可以减轻PS ASO依赖性TLR9的激活,从而提高治疗指数,从而进一步简化PS ASO药物的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic Analysis of Chemical Modifications of Phosphorothioate Antisense Oligonucleotides that Modulate Their Innate Immune Response.

While rare, some gapmer phosphorothioate (PS) antisense oligonucleotides (ASOs) can induce a noncanonical TLR9-dependent innate immune response. In this study, we performed systematic analyses of the roles of PS ASO backbone chemistry, 2' modifications, and sequence in PS ASO induced TLR9 signaling. We found that each of these factors can contribute to altering PS ASO induced TLR9 signaling, and in some cases the effects are quite dramatic. We also found that the positioning (5' vs. 3') of a particular backbone or 2' modification within a PS ASO can affect its TLR9 signaling. Interestingly, medicinal chemical strategies that decrease TLR9 signaling for one sequence can have opposing effects on another sequence. Our results demonstrate that TLR9 signaling is highly PS ASO sequence dependent, the mechanism of which remains unknown. Despite this, we determined that placement of two mesyl phosphoramidate linkages within the PS ASO gap is the most promising strategy to mitigate PS ASO dependent TLR9 activation to enhance the therapeutic index and, therefore, further streamline PS ASO drug development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic acid therapeutics
Nucleic acid therapeutics BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
7.60
自引率
7.50%
发文量
47
审稿时长
>12 weeks
期刊介绍: Nucleic Acid Therapeutics is the leading journal in its field focusing on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal examines many new approaches for using nucleic acids as therapeutic agents or in modifying nucleic acids for therapeutic purposes including: oligonucleotides, gene modification, aptamers, RNA nanoparticles, and ribozymes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信