{"title":"Hepatotoxicity Reduction Profiles of Antisense Oligonucleotides Containing Amido-Bridged Nucleic Acid and 2'-O,4'-C-Spirocyclopropylene Bridged Nucleic Acid.","authors":"Takaaki Kawanobe, Shinya Asano, Hitoshi Kandori, Masami Aoki, Ajaya Ram Shrestha, Kazuo Sekiguchi, Kotaro Yokoyama, Ryo Fukuda, Tadashi Umemoto","doi":"10.1089/nat.2024.0047","DOIUrl":"https://doi.org/10.1089/nat.2024.0047","url":null,"abstract":"<p><p>Amido-bridged nucleic acid (AmNA) and a 2'-O,4'-C-spirocyclopropylene bridged nucleic acid (scpBNA) are bridged nucleic acid analogs with high binding affinity toward complementary strands along with high nuclease resistance. AmNA and scpBNA have been developed to overcome phosphorothioate modified gapmer hepatotoxicity, while the mechanism of reducing hepatotoxicity still remains unknown. Here, we found that antisense oligonucleotides (ASOs) with combination of AmNA, scpBNA, and phosphodiester (PO) bonds could significantly reduce hepatotoxicity in mice. Histopathological findings of the periportal spaces of the liver were observed only in the locked nucleic acid and AmNA-scpBNA groups, but not in the AmNA-scpBNA-PO group. Furthermore, bioinformatics and histopathological analysis revealed that the reduced hepatotoxicity might be related to mitochondrial abnormalities, such as decreased expression levels of Atp5o and Sdhb genes. Taken together, the results of this study demonstrated that AmNA, scpBNA, and PO modification are able to reduce hepatotoxicity for improving the potential of ASOs.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143710655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saket Agarwal, Elizabeth Taft, Micah Gauthier, Justin Darcy, Kira Buckowing, Daniel Berman, Wendell P Davis, Arlin B Rogers, Maja M Janas
{"title":"Mechanistic Insights into Hybridization-Based Off-Target Activity of GalNAc-siRNA Conjugates.","authors":"Saket Agarwal, Elizabeth Taft, Micah Gauthier, Justin Darcy, Kira Buckowing, Daniel Berman, Wendell P Davis, Arlin B Rogers, Maja M Janas","doi":"10.1089/nat.2024.0090","DOIUrl":"https://doi.org/10.1089/nat.2024.0090","url":null,"abstract":"<p><p>Nonclinical safety screening of small interfering RNAs (siRNAs) conjugated to a trivalent <i>N</i>-acetylgalactosamine (GalNAc) ligand is typically carried out in rats at exaggerated exposures in a repeat-dose regimen. We have previously shown that at these suprapharmacological doses, hepatotoxicity observed with a subset of GalNAc-siRNAs is largely driven by undesired RNA-induced silencing complex (RISC)-mediated antisense strand seed-based off-target activity, similar to microRNA-like regulation. However, the RISC component requirements for off-target activity of siRNAs have not been evaluated. Here, we evaluate the roles of major RISC components, AGO and TNRC6 (or GW182) proteins, in driving on- and off-target activity of GalNAc-siRNAs in hepatocytes, <i>in vitro</i> and <i>in vivo</i>. We demonstrate that knocking down AGO2, but not AGO1 or AGO4, is protective against GalNAc-siRNA-driven off-target activity and hepatotoxicity. As expected, knocking down AGO2, but not AGO1 or AGO4, reduces the on-target activity of GalNAc-siRNA. Similarly, knocking down TNRC6 paralogs, TNRC6A or TNRC6B, but not TNRC6C, is protective against off-target activity and hepatotoxicity while having minimal impact on the on-target activity of GalNAc-siRNA. These data indicate that while AGO2 is the only RISC component required for the on-target activity of GalNAc-siRNAs, the undesired off-target activity and hepatotoxicity of a subset of GalNAc-siRNAs are mediated via the RISC composed predominantly of AGO2 and TNRC6 paralogs TNRC6A and/or TNRC6B.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143710661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mathilde Blitek, Cécile Gastaldi, Mathilde Doisy, Olivier Le Coz, Thomas Tensorer, Luis Garcia, Aurélie Goyenvalle
{"title":"Combined 20-Hydroxyecdysone and Antisense-Mediated Exon Skipping Improve Functional Outcomes in a Mouse Model of Duchenne Muscular Dystrophy.","authors":"Mathilde Blitek, Cécile Gastaldi, Mathilde Doisy, Olivier Le Coz, Thomas Tensorer, Luis Garcia, Aurélie Goyenvalle","doi":"10.1089/nat.2024.0085","DOIUrl":"https://doi.org/10.1089/nat.2024.0085","url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is a severe X-linked disorder caused by mutations in the DMD gene, resulting in a lack of dystrophin protein. This leads to progressive muscle wasting, cardiac and respiratory dysfunction, and premature death. Antisense oligonucleotide (ASO)-based therapies represent a promising approach to treating DMD, with several already approved by the FDA. However, the levels of dystrophin restoration achieved in clinical trials are often insufficient for meaningful therapeutic impact, highlighting the urgent need to enhance ASO efficacy. One potential strategy is to improve muscle pathophysiology, which is compromised in DMD due to cycles of necrosis and regeneration, chronic inflammation, and fibrotic and adipose tissue replacement. These disease characteristics may limit ASO efficiency. In this study, we evaluated the combination of tricyclo-DNA-ASO targeting the <i>Dmd</i> exon 23 with 20-hydroxyecdysone (20-E), a steroid hormone known to activate the protective arm of the renin-angiotensin-aldosterone system, enhance protein and ATP synthesis, and exhibit anti-inflammatory and antifibrotic properties. <i>Mdx</i> mice were treated with ASO alone or in combination with 20-E for 8 weeks. While both treatments restored similar levels of dystrophin and significantly improved functional outcomes such as the distance run and maximum speed in the treadmill exhaustion test, other improvements like the specific force and the decrease in the force drop after eccentric contraction were observed only with the combination therapy. Importantly, the cotreatment was well tolerated without liver or kidney toxicity. These findings provide proof of concept that combining 20-E with ASO therapy can ameliorate dystrophic pathology and improve muscle function in a DMD mouse model. By targeting both dystrophin restoration and muscle pathophysiology, this combined approach may offer a therapeutic strategy with the potential for meaningful clinical benefits, warranting further investigation and potential translation to patients.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Todd Oppeneer, Yulan Qi, Joshua Henshaw, Kevin Larimore, Jukka Puoliväli, Caitlyn Carter, Pierluigi Fant, Sebastian Brennan, Laura A Wetzel, Monika A Sigg, Charles A O'Neill
{"title":"BMN 351-Induced Exon Skipping and Dystrophin Expression in Skeletal and Cardiac Muscle Lead to Preservation of Motor Function in a Mouse Model of Exon 51 Skip-Amenable Duchenne Muscular Dystrophy.","authors":"Todd Oppeneer, Yulan Qi, Joshua Henshaw, Kevin Larimore, Jukka Puoliväli, Caitlyn Carter, Pierluigi Fant, Sebastian Brennan, Laura A Wetzel, Monika A Sigg, Charles A O'Neill","doi":"10.1089/nat.2024.0050","DOIUrl":"https://doi.org/10.1089/nat.2024.0050","url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is caused by mutations of the <i>DMD</i> gene that prevent the expression of functional dystrophin protein. BMN 351 is an antisense oligonucleotide (ASO) designed to induce skipping of exon 51 of dystrophin pre-mRNA and production of internally deleted but functional dystrophin. We determined whether extended-term BMN 351 dosing leads to exon skipping, dystrophin production, and improved motor function in hDMDdel52/<i>mdx</i> mice containing a human exon 52-deleted <i>DMD</i> transgene. Weekly intravenous doses of vehicle, 6 mg/kg BMN 351, or 18 mg/kg BMN 351 were administered for 25 weeks, and samples were analyzed 4 and 12 weeks post-dosing. BMN 351 produced dose-dependent exon skipping levels in the heart and quadriceps muscles, accompanied by dose-dependent increases in mean dystrophin levels of 17% to 55% 12 weeks post-dosing. Compared with vehicle-treated hDMDdel52/<i>mdx</i> mice, BMN 351 ameliorated DMD-related histopathologic changes in the gastrocnemius muscle and heart. Both BMN 351 doses preserved fine motor kinematics, which was worse in vehicle-treated hDMDdel52/<i>mdx</i> mice compared with wild-type 4 and 12 weeks post-dosing. Liver samples demonstrated findings consistent with ASO accumulation, to which mice are considered especially sensitive compared to humans and other non-clinical species. These results support further non-clinical and clinical development of BMN 351.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Todd Oppeneer, Yulan Qi, Joshua Henshaw, Kevin Larimore, Andrew Melton, Jukka Puoliväli, Caitlyn Carter, Pierluigi Fant, Sebastian Brennan, Laura A Wetzel, Monika A Sigg, Brett E Crawford, Jenna Magat, Steven Froelich, Josh C Woloszynek, Charles A O'Neill
{"title":"Targeting a Novel Site in Exon 51 with Antisense Oligonucleotides Induces Enhanced Exon Skipping in a Mouse Model of Duchenne Muscular Dystrophy.","authors":"Todd Oppeneer, Yulan Qi, Joshua Henshaw, Kevin Larimore, Andrew Melton, Jukka Puoliväli, Caitlyn Carter, Pierluigi Fant, Sebastian Brennan, Laura A Wetzel, Monika A Sigg, Brett E Crawford, Jenna Magat, Steven Froelich, Josh C Woloszynek, Charles A O'Neill","doi":"10.1089/nat.2024.0049","DOIUrl":"https://doi.org/10.1089/nat.2024.0049","url":null,"abstract":"<p><p>Exon skipping with antisense oligonucleotides (ASOs) can correct disease-causing mutations of Duchenne muscular dystrophy (DMD) through RNA-targeted splice correction. This correction restores the reading frame and supports expression of near full-length dystrophin. First-generation exon 51-skipping ASOs targeted the same binding site, with limited clinical efficacy. We characterized a novel binding site within exon 51 that induced highly efficient exon skipping. A precursor ASO (AON-C12) and clinical ASO (BMN 351) were designed using 2'-<i>O</i>-methyl-modified phosphorothioate (2'OMePS) RNA and locked nucleic acids. hDMDdel52/<i>mdx</i> mice were given AON-C12 or BMN 351 for 13 weeks and evaluated for molecular and phenotypic correction of dystrophin deficiency. BMN 351 treatment induced durable, dose-dependent levels of exon skipping and dystrophin production in all muscles evaluated. In the heart, 8 weeks after the last BMN 351 dose at 18 mg/kg, exon-skipped transcripts remained at 44.3% of total, and dystrophin levels were 21.8% of wild type. BMN 351 reached higher tissue concentrations and percent exon skipping in the heart than a clinically relevant peptide-conjugated phosphorodiamidate morpholino oligomer comparator. BMN 351 also improved gait scores and clinical and anatomical muscle pathology parameters compared with vehicle-treated hDMDdel52/<i>mdx</i> mice. The pharmacologic activity and safety of BMN 351 warrant further nonclinical and clinical development.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joel D Parry, Tod A Harper, Patrik Andersson, Joanne M Elloway, Natalie S Holman, William E Achanzar, Anthony Lynch, Yann Tessier, Meredith Crosby, Eike Floettmann, Marie Coeffet, Melanie Guérard, Nicole H P Cnubben, Onyi N Irrechukwu, Olivier Wattrelos, Yi Yang
{"title":"Opportunities for More Tailored Approaches to Genotoxicity Testing and Carcinogenicity Strategy for Oligonucleotide Therapeutics: Outcome of an Industry Survey.","authors":"Joel D Parry, Tod A Harper, Patrik Andersson, Joanne M Elloway, Natalie S Holman, William E Achanzar, Anthony Lynch, Yann Tessier, Meredith Crosby, Eike Floettmann, Marie Coeffet, Melanie Guérard, Nicole H P Cnubben, Onyi N Irrechukwu, Olivier Wattrelos, Yi Yang","doi":"10.1089/nat.2024.0075","DOIUrl":"10.1089/nat.2024.0075","url":null,"abstract":"<p><p>The Oligonucleotide Nonclinical Working Group (WG) of the European Federation of Pharmaceutical Industries and Associations conducted an industry survey to understand current practices and regulatory expectations for genotoxicity and carcinogenicity assessment of oligonucleotide therapeutics (ONTs), along with historical genotoxicity testing results. The survey, involving 29 pharmaceutical and biotechnology companies, revealed a consistent absence of genotoxicity across a diverse range of oligonucleotide classes and chemistries, consistent with previous observations. Despite the lack of genotoxicity, companies continue to follow standard testing guidelines, with only limited divergence. The survey data support the view that well-established ONT modifications can be considered \"precedented,\" in terms of negligible genotoxic risk. As such, further testing of new ONT candidates containing only precedented modifications is unwarranted, when defined criteria are met. Further, we propose a pathway for novel ONT chemical modifications to achieve precedented status. The survey results also indicate that alternative strategies for carcinogenicity assessment (e.g., single-species testing) can be accepted by regulatory agencies under certain circumstances. Overall, the survey findings underscore the need for a more tailored approach to the nonclinical safety assessment of ONTs, and the WG proposes development of supplementary questions for International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use S2(R1) guidance to reflect this broad industry experience.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"34-48"},"PeriodicalIF":4.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"It is Time to Revisit miRNA Therapeutics.","authors":"David R Corey","doi":"10.1089/nat.2024.0069","DOIUrl":"10.1089/nat.2024.0069","url":null,"abstract":"<p><p>The recent Nobel Prizes awarded to Ambros and Ruvkun have refocused attention on microRNAs (miRNAs). The importance of miRNAs for basic science has always been clear, but the application to therapy has lagged behind. This delay has been made even more apparent by the accelerating pace of successful programs using duplex RNAs and antisense oligonucleotides to target mRNA. Why has progress been slow? A clear understanding of how miRNAs function in mammalian cells is obscured by the fact that miRNAs can exert their effects through multiple complex mechanisms. This gap in our knowledge has complicated progress in drug discovery. Better insights into the mechanism of miRNAs, more rigorous definitions of miRNAs, and more powerful tools for establishing the physical contacts necessary for miRNA action are now available. These advances lead to a central question for nucleic acid therapy-can miRNAs be productive targets for drug discovery and development?</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"1-5"},"PeriodicalIF":4.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David P Chimento, Amy L Anderson, Inês Fial, Carl A Ascoli
{"title":"Bioanalytical Assays for Oligonucleotide Therapeutics: Adding Antibody-Based Immunoassays to the Toolbox as an Orthogonal Approach to LC-MS/MS and Ligand Binding Assays.","authors":"David P Chimento, Amy L Anderson, Inês Fial, Carl A Ascoli","doi":"10.1089/nat.2024.0065","DOIUrl":"https://doi.org/10.1089/nat.2024.0065","url":null,"abstract":"","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"35 1","pages":"6-15"},"PeriodicalIF":4.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrik Andersson, Sebastien A Burel, Heather Estrella, Jeffrey Foy, Peter H Hagedorn, Tod A Harper, Scott P Henry, Jean-Christophe Hoflack, Erle M Holgersen, Arthur A Levin, Eliot Morrison, Adam Pavlicek, Luca Penso-Dolfin, Utsav Saxena
{"title":"Assessing Hybridization-Dependent Off-Target Risk for Therapeutic Oligonucleotides: Updated Industry Recommendations.","authors":"Patrik Andersson, Sebastien A Burel, Heather Estrella, Jeffrey Foy, Peter H Hagedorn, Tod A Harper, Scott P Henry, Jean-Christophe Hoflack, Erle M Holgersen, Arthur A Levin, Eliot Morrison, Adam Pavlicek, Luca Penso-Dolfin, Utsav Saxena","doi":"10.1089/nat.2024.0072","DOIUrl":"10.1089/nat.2024.0072","url":null,"abstract":"<p><p>Hybridization-dependent off-target (OffT) effects, occurring when oligonucleotides bind via Watson-Crick-Franklin hybridization to unintended RNA transcripts, remain a critical safety concern for oligonucleotide therapeutics (ONTs). Despite the importance of OffT assessment of clinical trial ONT candidates, formal guidelines are lacking, with only brief mentions in Japanese regulatory documents (2020) and US Food and Drug Administration (FDA) recommendations for hepatitis B virus treatments (2022). This article presents updated industry recommendations for assessing OffTs of ONTs, building upon the 2012 Oligonucleotide Safety Working Group (OSWG) recommendations and accounting for recent technological advancements. A new OSWG subcommittee, comprising industry experts in RNase H-dependent and steric blocking antisense oligonucleotides and small interfering RNAs, has developed a comprehensive framework for OffT assessment. The proposed workflow encompasses five key steps: (1) OffT identification through <i>in silico</i> complementarity prediction and transcriptomics analysis, (2) focus on cell types with relevant ONT activity, (3) <i>in vitro</i> verification and margin assessment, (4) risk assessment based on the OffT biological role, and (5) management of unavoidable OffTs. The authors provide detailed considerations for various ONT classes, emphasizing the importance of ONT-specific factors such as chemistry, delivery systems, and tissue distribution in OffT evaluation. The article also explores the potential of machine learning models to enhance OffT prediction and discusses strategies for experimental verification and risk assessment. These updated recommendations aim to improve the safety profile of ONTs entering clinical trials and to manage unavoidable OffTs. The authors hope that these recommendations will serve as a valuable resource for ONT development and for the forthcoming finalization of the FDA draft guidance and the International Council for Harmonization S13 guidance on Nonclinical Safety Assessment of Oligonucleotide-Based Therapeutics.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"16-33"},"PeriodicalIF":4.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143256211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}