Jeannine A Frei, Juliana E Gentile, Yuan Lian, Meredith A Mortberg, Juliana Capitanio, Paymaan Jafar-Nejad, Sonia M Vallabh, Hien T Zhao, Eric Vallabh Minikel
{"title":"非人灵长类动物脑深部鞘内反义寡核苷酸活性的细胞类型分布。","authors":"Jeannine A Frei, Juliana E Gentile, Yuan Lian, Meredith A Mortberg, Juliana Capitanio, Paymaan Jafar-Nejad, Sonia M Vallabh, Hien T Zhao, Eric Vallabh Minikel","doi":"10.1177/21593337251371594","DOIUrl":null,"url":null,"abstract":"<p><p>Intrathecally administered RNase H1-active gapmer antisense oligonucleotides (ASOs) are promising therapeutics for brain diseases where lowering the expression of one target gene is expected to be therapeutically beneficial. Such ASOs are active, to varying degrees, across most or all cell types in the cortex and cerebellum of mouse and non-human primate (NHP) brain regions with substantial drug accumulation. Intrathecally delivered ASOs, however, exhibit a gradient of exposure across the brain, with more limited drug accumulation and weaker target engagement in deep brain regions of NHP. Here, we profiled the activity of a tool, ASO, against <i>Malat1</i> in three deep brain regions of NHP: thalamus, caudate, and putamen. All neuronal subtypes exhibited knockdown similar to, or deeper than, the bulk tissue. Among non-neuronal cells, knockdown was deepest in microglia and weakest in endothelial stalk. Overall, we observed broad target engagement across all cell types detected, supporting the relevance of intrathecal ASOs to diseases with deep brain involvement.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell Type Distribution of Intrathecal Antisense Oligonucleotide Activity in Deep Brain Regions of Non-Human Primates.\",\"authors\":\"Jeannine A Frei, Juliana E Gentile, Yuan Lian, Meredith A Mortberg, Juliana Capitanio, Paymaan Jafar-Nejad, Sonia M Vallabh, Hien T Zhao, Eric Vallabh Minikel\",\"doi\":\"10.1177/21593337251371594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intrathecally administered RNase H1-active gapmer antisense oligonucleotides (ASOs) are promising therapeutics for brain diseases where lowering the expression of one target gene is expected to be therapeutically beneficial. Such ASOs are active, to varying degrees, across most or all cell types in the cortex and cerebellum of mouse and non-human primate (NHP) brain regions with substantial drug accumulation. Intrathecally delivered ASOs, however, exhibit a gradient of exposure across the brain, with more limited drug accumulation and weaker target engagement in deep brain regions of NHP. Here, we profiled the activity of a tool, ASO, against <i>Malat1</i> in three deep brain regions of NHP: thalamus, caudate, and putamen. All neuronal subtypes exhibited knockdown similar to, or deeper than, the bulk tissue. Among non-neuronal cells, knockdown was deepest in microglia and weakest in endothelial stalk. Overall, we observed broad target engagement across all cell types detected, supporting the relevance of intrathecal ASOs to diseases with deep brain involvement.</p>\",\"PeriodicalId\":19412,\"journal\":{\"name\":\"Nucleic acid therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic acid therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/21593337251371594\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acid therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/21593337251371594","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cell Type Distribution of Intrathecal Antisense Oligonucleotide Activity in Deep Brain Regions of Non-Human Primates.
Intrathecally administered RNase H1-active gapmer antisense oligonucleotides (ASOs) are promising therapeutics for brain diseases where lowering the expression of one target gene is expected to be therapeutically beneficial. Such ASOs are active, to varying degrees, across most or all cell types in the cortex and cerebellum of mouse and non-human primate (NHP) brain regions with substantial drug accumulation. Intrathecally delivered ASOs, however, exhibit a gradient of exposure across the brain, with more limited drug accumulation and weaker target engagement in deep brain regions of NHP. Here, we profiled the activity of a tool, ASO, against Malat1 in three deep brain regions of NHP: thalamus, caudate, and putamen. All neuronal subtypes exhibited knockdown similar to, or deeper than, the bulk tissue. Among non-neuronal cells, knockdown was deepest in microglia and weakest in endothelial stalk. Overall, we observed broad target engagement across all cell types detected, supporting the relevance of intrathecal ASOs to diseases with deep brain involvement.
期刊介绍:
Nucleic Acid Therapeutics is the leading journal in its field focusing on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal examines many new approaches for using nucleic acids as therapeutic agents or in modifying nucleic acids for therapeutic purposes including: oligonucleotides, gene modification, aptamers, RNA nanoparticles, and ribozymes.