Melanie Sauer, Xavier Segarra-Visent, Leon Breuer, Vasileios Tzirtziganis, Tatyana Ryaykenen, David A Cooper, Dimas Echeverria, Anastasia Kremer, Reka A Haraszti
{"title":"sirna处理细胞的低温保存是可行的。","authors":"Melanie Sauer, Xavier Segarra-Visent, Leon Breuer, Vasileios Tzirtziganis, Tatyana Ryaykenen, David A Cooper, Dimas Echeverria, Anastasia Kremer, Reka A Haraszti","doi":"10.1177/21593337251381041","DOIUrl":null,"url":null,"abstract":"<p><p>Cryopreservation is a routine step in the manufacturing process of adoptive cell therapies (ACT), providing critical logistic flexibility. RNA interference (RNAi)-based therapies are increasingly being explored as enhancers or modulators of ACT. However, the impact of cryopreservation on cells treated with RNAi-based therapies has not been investigated before. In this study, we addressed this knowledge gap by examining silencing efficacy in small interfering RNA (siRNA)-treated cells that undergo cryopreservation. Our findings demonstrate that silencing in cryopreserved cells is comparable to that in cells maintained continuously in culture. Moreover, we found that the duration of siRNA exposure plays a significant role in cells that later undergo cryopreservation, with extended exposure improving silencing efficiency. However, this effect diminishes at higher siRNA concentrations. Additionally, we showed that siRNA treatment is feasible at low temperatures (2°C-8°C), and siRNA-treated cells can be cryopreserved for extended periods (at least 1 month) without loss of efficacy. Our work establishes the feasibility of integrating siRNA treatments into current manufacturing processes for ACT.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryopreservation of siRNA-Treated Cells Is Feasible.\",\"authors\":\"Melanie Sauer, Xavier Segarra-Visent, Leon Breuer, Vasileios Tzirtziganis, Tatyana Ryaykenen, David A Cooper, Dimas Echeverria, Anastasia Kremer, Reka A Haraszti\",\"doi\":\"10.1177/21593337251381041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cryopreservation is a routine step in the manufacturing process of adoptive cell therapies (ACT), providing critical logistic flexibility. RNA interference (RNAi)-based therapies are increasingly being explored as enhancers or modulators of ACT. However, the impact of cryopreservation on cells treated with RNAi-based therapies has not been investigated before. In this study, we addressed this knowledge gap by examining silencing efficacy in small interfering RNA (siRNA)-treated cells that undergo cryopreservation. Our findings demonstrate that silencing in cryopreserved cells is comparable to that in cells maintained continuously in culture. Moreover, we found that the duration of siRNA exposure plays a significant role in cells that later undergo cryopreservation, with extended exposure improving silencing efficiency. However, this effect diminishes at higher siRNA concentrations. Additionally, we showed that siRNA treatment is feasible at low temperatures (2°C-8°C), and siRNA-treated cells can be cryopreserved for extended periods (at least 1 month) without loss of efficacy. Our work establishes the feasibility of integrating siRNA treatments into current manufacturing processes for ACT.</p>\",\"PeriodicalId\":19412,\"journal\":{\"name\":\"Nucleic acid therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic acid therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/21593337251381041\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acid therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/21593337251381041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cryopreservation of siRNA-Treated Cells Is Feasible.
Cryopreservation is a routine step in the manufacturing process of adoptive cell therapies (ACT), providing critical logistic flexibility. RNA interference (RNAi)-based therapies are increasingly being explored as enhancers or modulators of ACT. However, the impact of cryopreservation on cells treated with RNAi-based therapies has not been investigated before. In this study, we addressed this knowledge gap by examining silencing efficacy in small interfering RNA (siRNA)-treated cells that undergo cryopreservation. Our findings demonstrate that silencing in cryopreserved cells is comparable to that in cells maintained continuously in culture. Moreover, we found that the duration of siRNA exposure plays a significant role in cells that later undergo cryopreservation, with extended exposure improving silencing efficiency. However, this effect diminishes at higher siRNA concentrations. Additionally, we showed that siRNA treatment is feasible at low temperatures (2°C-8°C), and siRNA-treated cells can be cryopreserved for extended periods (at least 1 month) without loss of efficacy. Our work establishes the feasibility of integrating siRNA treatments into current manufacturing processes for ACT.
期刊介绍:
Nucleic Acid Therapeutics is the leading journal in its field focusing on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal examines many new approaches for using nucleic acids as therapeutic agents or in modifying nucleic acids for therapeutic purposes including: oligonucleotides, gene modification, aptamers, RNA nanoparticles, and ribozymes.