Sarah Allen, Daniel O'Reilly, Rachael Miller, Ellen Sapp, Ashley Summers, Joseph Paquette, Dimas Echeverria Moreno, Brianna Bramato, Nicholas McHugh, Ken Yamada, Neil Aronin, Marian DiFiglia, Anastasia Khvorova
{"title":"mRNA Nuclear Clustering Leads to a Difference in Mutant Huntingtin mRNA and Protein Silencing by siRNAs <i>In Vivo</i>.","authors":"Sarah Allen, Daniel O'Reilly, Rachael Miller, Ellen Sapp, Ashley Summers, Joseph Paquette, Dimas Echeverria Moreno, Brianna Bramato, Nicholas McHugh, Ken Yamada, Neil Aronin, Marian DiFiglia, Anastasia Khvorova","doi":"10.1089/nat.2024.0027","DOIUrl":"10.1089/nat.2024.0027","url":null,"abstract":"<p><p>Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by CAG repeat expansion in the first exon of the huntingtin gene (<i>HTT</i>). Oligonucleotide therapeutics, such as short interfering RNA (siRNA), reduce levels of huntingtin mRNA and protein <i>in vivo</i> and are considered a viable therapeutic strategy. However, the extent to which they silence huntingtin mRNA in the nucleus is not established. We synthesized siRNA cross-reactive to mouse (wild-type) <i>Htt</i> and human (mutant) <i>HTT</i> in a divalent scaffold and delivered to two mouse models of HD. In both models, divalent siRNA sustained lowering of wild-type <i>Htt</i>, but not mutant <i>HTT</i> mRNA expression in striatum and cortex. Near-complete silencing of both mutant HTT protein and wild-type HTT protein was observed in both models. Subsequent fluorescent <i>in situ</i> hybridization analysis shows that divalent siRNA acts predominantly on cytoplasmic mutant <i>HTT</i> transcripts, leaving clustered mutant <i>HTT</i> transcripts in the nucleus largely intact in treated HD mouse brains. The observed differences between mRNA and protein levels, exaggerated in the case of extended repeats, might apply to other repeat-associated neurological disorders.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"164-172"},"PeriodicalIF":4.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phosphorothioates and Me: A Lecture About My 35 Years in Oligo-World on My Receipt of the 2023 Lifetime Achievement Award of the Oligonucleotide Therapeutics Society.","authors":"Cy A Stein","doi":"10.1089/nat.2024.0032","DOIUrl":"10.1089/nat.2024.0032","url":null,"abstract":"","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"157-163"},"PeriodicalIF":4.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Croft, Mark Fisher, Tabassum Khair Barbhuiya, Serene El-Kamand, Samuel Beard, Aleksandra Rajapakse, Roland Gamsjaeger, L. Cubeddu, E. Bolderson, Ken O’Byrne, Derek Richard, Neha S Gandhi
{"title":"Sequence- and Structure-Dependent Cytotoxicity of Phosphorothioate and 2'-O-Methyl Modified Single-Stranded Oligonucleotides.","authors":"L. Croft, Mark Fisher, Tabassum Khair Barbhuiya, Serene El-Kamand, Samuel Beard, Aleksandra Rajapakse, Roland Gamsjaeger, L. Cubeddu, E. Bolderson, Ken O’Byrne, Derek Richard, Neha S Gandhi","doi":"10.1089/nat.2023.0056","DOIUrl":"https://doi.org/10.1089/nat.2023.0056","url":null,"abstract":"Single-stranded oligonucleotides (SSOs) are a rapidly expanding class of therapeutics that comprises antisense oligonucleotides, microRNAs, and aptamers, with ten clinically approved molecules. Chemical modifications such as the phosphorothioate backbone and the 2'-O-methyl ribose can improve the stability and pharmacokinetic properties of therapeutic SSOs, but they can also lead to toxicity in vitro and in vivo through nonspecific interactions with cellular proteins, gene expression changes, disturbed RNA processing, and changes in nuclear structures and protein distribution. In this study, we screened a mini library of 277 phosphorothioate and 2'-O-methyl-modified SSOs, with or without mRNA complementarity, for cytotoxic properties in two cancer cell lines. Using circular dichroism, nucleic magnetic resonance, and molecular dynamics simulations, we show that phosphorothioate- and 2'-O-methyl-modified SSOs that form stable hairpin structures through Watson-Crick base pairing are more likely to be cytotoxic than those that exist in an extended conformation. In addition, moderate and highly cytotoxic SSOs in our dataset have a higher mean purine composition than pyrimidine. Overall, our study demonstrates a structure-cytotoxicity relationship and indicates that the formation of stable hairpins should be a consideration when designing SSOs toward optimal therapeutic profiles.","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"15 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140674439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui Xu, Emmanuel Njumbe Ediage, Tom Verhaeghe, Jan Snoeys, Lieve Dillen
{"title":"Therapeutic siRNA Loaded to RISC as Single and Double Strands Requires an Appropriate Quantitative Assay for RISC PK Assessment.","authors":"Rui Xu, Emmanuel Njumbe Ediage, Tom Verhaeghe, Jan Snoeys, Lieve Dillen","doi":"10.1089/nat.2023.0067","DOIUrl":"https://doi.org/10.1089/nat.2023.0067","url":null,"abstract":"In recent years, therapeutic siRNA projects are booming in the biotech and pharmaceutical industries. As these drugs act by silencing the target gene expression, a critical step is the binding of antisense strands of siRNA to RNA-induced silencing complex (RISC) and then degrading their target mRNA. However, data that we recently obtained suggest that double-stranded siRNA can also load to RISC. This brings a new understanding of the mechanism of RISC loading which may have a potential impact on how quantification of RISC loaded siRNA should be performed. By combining RNA immune precipitation and probe-based hybridization LC-fluorescence approach, we have developed a novel assay that can accurately quantify the RISC-bound antisense strand, irrespective of which form (double-stranded or single-stranded) is loaded on RISC. In addition, this novel assay can discriminate between the 5'-phosphorylated antisense (5'p-AS) and the nonphosphorylated forms, therefore specifically quantifying the RISC bound 5'p-AS. In comparison, stem-loop qPCR assay does not provide discrimination and accurate quantification when the oligonucleotide analyte exists as a mixture of double and single-stranded forms. Taking together, RISC loading assay with probe-hybridization LC-fluorescence technique would be a more accurate and specific quantitative approach for RISC-associated pharmacokinetic assessment.","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" 59","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140683834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Understanding and Rescuing the Splicing Defect Caused by the Frequent ABCA4 Variant c.4253 + 43G>A Underlying Stargardt Disease, by Nuria Suárez-Herrera et al., Nucleic Acid Ther 2024;34(2):73-82; doi: 10.1089/nat.2023.0076.","authors":"","doi":"10.1089/nat.2023.0076.correx","DOIUrl":"https://doi.org/10.1089/nat.2023.0076.correx","url":null,"abstract":"","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"84 6","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140694482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Martínez-Pizarro, Mar Alvarez, M. Dembic, Caroline A Lindegaard, Margarita Castro, Eva Richard, Brage S Andresen, L. Desviat
{"title":"Splice-Switching Antisense Oligonucleotides Correct Phenylalanine Hydroxylase Exon 11 Skipping Defects and Rescue Enzyme Activity in Phenylketonuria.","authors":"A. Martínez-Pizarro, Mar Alvarez, M. Dembic, Caroline A Lindegaard, Margarita Castro, Eva Richard, Brage S Andresen, L. Desviat","doi":"10.1089/nat.2024.0014","DOIUrl":"https://doi.org/10.1089/nat.2024.0014","url":null,"abstract":"The PAH gene encodes the hepatic enzyme phenylalanine hydroxylase (PAH), and its deficiency, known as phenylketonuria (PKU), leads to neurotoxic high levels of phenylalanine. PAH exon 11 is weakly defined, and several missense and intronic variants identified in patients affect the splicing process. Recently, we identified a novel intron 11 splicing regulatory element where U1snRNP binds, participating in exon 11 definition. In this work, we describe the implementation of an antisense strategy targeting intron 11 sequences to correct the effect of PAH mis-splicing variants. We used an in vitro assay with minigenes and identified splice-switching antisense oligonucleotides (SSOs) that correct the exon skipping defect of PAH variants c.1199+17G>A, c.1199+20G>C, c.1144T>C, and c.1066-3C>T. To examine the functional rescue induced by the SSOs, we generated a hepatoma cell model with variant c.1199+17G>A using CRISPR/Cas9. The edited cell line reproduces the exon 11 skipping pattern observed from minigenes, leading to reduced PAH protein levels and activity. SSO transfection results in an increase in exon 11 inclusion and corrects PAH deficiency. Our results provide proof of concept of the potential therapeutic use of a single SSO for different exonic and intronic splicing variants causing PAH exon 11 skipping in PKU.","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"62 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140723863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Considerations for Creating the Next Generation of RNA Therapeutics: Oligonucleotide Chemistry and Innate Immune Responses to Nucleic Acids.","authors":"Sudhir Agrawal","doi":"10.1089/nat.2024.29009.sud","DOIUrl":"https://doi.org/10.1089/nat.2024.29009.sud","url":null,"abstract":"","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"651 ","pages":"37-51"},"PeriodicalIF":4.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140784777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuria Suárez-Herrera, Alejandro Garanto, Rob W J Collin
{"title":"Understanding and Rescuing the Splicing Defect Caused by the Frequent <i>ABCA4</i> Variant c.4253+43G>A Underlying Stargardt Disease.","authors":"Nuria Suárez-Herrera, Alejandro Garanto, Rob W J Collin","doi":"10.1089/nat.2023.0076","DOIUrl":"10.1089/nat.2023.0076","url":null,"abstract":"<p><p>Pathogenic variants in <i>ABCA4</i> are the underlying molecular cause of Stargardt disease (STGD1), an autosomal recessive macular dystrophy characterized by a progressive loss of central vision. Among intronic <i>ABCA4</i> variants, c.4253+43G>A is frequently detected in STGD1 cases and is classified as a hypomorphic allele, generally associated with late-onset cases. This variant was previously reported to alter splicing regulatory sequences, but the splicing outcome is not fully understood yet. In this study, we attempted to better understand its effect on splicing and to rescue the aberrant splicing via antisense oligonucleotides (AONs). Wild-type and c.4253+43G>A variant-harboring maxigene vectors revealed additional skipping events, which were not previously detected upon transfection in HEK293T cells. To restore exon inclusion, we designed a set of 27 AONs targeting either splicing silencer motifs or the variant region and screened these in maxigene-transfected HEK293T cells. Candidate AONs able to promote exon inclusion were selected for further testing in patient-derived photoreceptor precursor cells. Surprisingly, no robust splicing modulation was observed in this model system. Overall, this research helped to adequately characterize the splicing alteration caused by the c.4253+43G>A variant, although future development of AON-mediated exon inclusion therapy for <i>ABCA4</i> is needed.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"73-82"},"PeriodicalIF":4.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuan Zhou, Xianglin Shi, Yannick Fillon, Firoz Antia, Thomas Pickel, Jing Yang, William Zhang, Armin Delavari, Jiabao Zhang
{"title":"Simplified Oligonucleotide Phosphorus Deprotection Process with Reduced 3-(2-Cyanoethyl) Thymidine Impurities.","authors":"Xuan Zhou, Xianglin Shi, Yannick Fillon, Firoz Antia, Thomas Pickel, Jing Yang, William Zhang, Armin Delavari, Jiabao Zhang","doi":"10.1089/nat.2023.0060","DOIUrl":"10.1089/nat.2023.0060","url":null,"abstract":"<p><p>Oligonucleotides have emerged as valuable new therapeutics. Presently, oligonucleotide manufacturing consists in a series of stepwise additions until the full-length product is obtained. Deprotection of the phosphorus backbone before cleavage and deprotection (C&D) by ammonolysis is necessary to control the 3-(2-cyanoethyl) thymidine (CNET) impurity. In this study, we demonstrate that the use of piperazine as a scavenger of acrylonitrile allows phosphorus deprotection and C&D to be combined in a single step. This reduces solvent consumption, processing time, and CNET levels. Additionally, we showed that substitution of piperazine for triethylamine in the phosphorus deprotection step of supported-synthesis leads to reduced reaction times and lower levels of CNET impurities.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"83-89"},"PeriodicalIF":4.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139692558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jillian Belgrad, Hassan H Fakih, Anastasia Khvorova
{"title":"Nucleic Acid Therapeutics: Successes, Milestones, and Upcoming Innovation.","authors":"Jillian Belgrad, Hassan H Fakih, Anastasia Khvorova","doi":"10.1089/nat.2023.0068","DOIUrl":"10.1089/nat.2023.0068","url":null,"abstract":"<p><p>Nucleic acid-based therapies have become the third major drug class after small molecules and antibodies. The role of nucleic acid-based therapies has been strengthened by recent regulatory approvals and tremendous clinical success. In this review, we look at the major obstacles that have hindered the field, the historical milestones that have been achieved, and what is yet to be resolved and anticipated soon. This review provides a view of the key innovations that are expanding nucleic acid capabilities, setting the stage for the future of nucleic acid therapeutics.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"52-72"},"PeriodicalIF":4.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}