以小鼠载脂蛋白 C-III mRNA 为靶点的反义寡核苷酸对小鼠生育能力和发育毒性的综合研究

IF 4 2区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ji-Seong Jeong, Archit Rastogi, Tae-Won Kim, Scott Henry, Christine M Hoffmaster, Sang Yun Kim, Woojin Kim, Sun-Young Lee, Jeong-Dong Park, In-Su Wi, Wook-Joon Yu, Jinsoo Lee
{"title":"以小鼠载脂蛋白 C-III mRNA 为靶点的反义寡核苷酸对小鼠生育能力和发育毒性的综合研究","authors":"Ji-Seong Jeong, Archit Rastogi, Tae-Won Kim, Scott Henry, Christine M Hoffmaster, Sang Yun Kim, Woojin Kim, Sun-Young Lee, Jeong-Dong Park, In-Su Wi, Wook-Joon Yu, Jinsoo Lee","doi":"10.1089/nat.2024.0057","DOIUrl":null,"url":null,"abstract":"<p><p>Here, we present the reproductive toxicology profile of ISIS 838707, a GalNAc-conjugated antisense oligonucleotide (ASO) targeting mouse Apolipoprotein C-III (ApoC-III) mRNA. ISIS 838707 was subcutaneously administered during the premating, mating, and gestation periods to male and female mice at 0, 5, 10, and 20 mg/kg/week. Key focus areas included fertility, reproductive cell functions, estrus cycle, tubal transport, implantation, embryo development stages, and teratogenic potential. We also investigated the toxicokinetics and target mRNA knockdown effects. The treatment was well-tolerated at all dose levels, with no overt toxicity. Treatment led to decreased total cholesterol and/or triglyceride levels at doses ≥5 mg/kg/week, concordant with effective knockdown of ApoC-III mRNA (>85% reduction at all dose levels). Toxicokinetic analysis revealed predominant distribution to the liver of parental animals and minimally to the placenta, with no detectable transfer to fetal liver. Despite these pharmacological effects, there were no discernible adverse impacts on developmental and reproductive functions. These findings suggest that ISIS 838707, while effective in modulating ApoC-III mRNA and lipid profiles, does not adversely impact on reproductive and developmental functions in mice. The study contributes insights into the safety profile of ASOs and reduction of ApoC<i>-</i>III expression, particularly in the context of reproductive and developmental health.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Combined Fertility and Developmental Toxicity Study with an Antisense Oligonucleotide Targeting Murine Apolipoprotein C-III mRNA in Mice.\",\"authors\":\"Ji-Seong Jeong, Archit Rastogi, Tae-Won Kim, Scott Henry, Christine M Hoffmaster, Sang Yun Kim, Woojin Kim, Sun-Young Lee, Jeong-Dong Park, In-Su Wi, Wook-Joon Yu, Jinsoo Lee\",\"doi\":\"10.1089/nat.2024.0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here, we present the reproductive toxicology profile of ISIS 838707, a GalNAc-conjugated antisense oligonucleotide (ASO) targeting mouse Apolipoprotein C-III (ApoC-III) mRNA. ISIS 838707 was subcutaneously administered during the premating, mating, and gestation periods to male and female mice at 0, 5, 10, and 20 mg/kg/week. Key focus areas included fertility, reproductive cell functions, estrus cycle, tubal transport, implantation, embryo development stages, and teratogenic potential. We also investigated the toxicokinetics and target mRNA knockdown effects. The treatment was well-tolerated at all dose levels, with no overt toxicity. Treatment led to decreased total cholesterol and/or triglyceride levels at doses ≥5 mg/kg/week, concordant with effective knockdown of ApoC-III mRNA (>85% reduction at all dose levels). Toxicokinetic analysis revealed predominant distribution to the liver of parental animals and minimally to the placenta, with no detectable transfer to fetal liver. Despite these pharmacological effects, there were no discernible adverse impacts on developmental and reproductive functions. These findings suggest that ISIS 838707, while effective in modulating ApoC-III mRNA and lipid profiles, does not adversely impact on reproductive and developmental functions in mice. The study contributes insights into the safety profile of ASOs and reduction of ApoC<i>-</i>III expression, particularly in the context of reproductive and developmental health.</p>\",\"PeriodicalId\":19412,\"journal\":{\"name\":\"Nucleic acid therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic acid therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/nat.2024.0057\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acid therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/nat.2024.0057","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们介绍了针对小鼠载脂蛋白 C-III (ApoC-III) mRNA 的 GalNAc 结合型反义寡核苷酸 (ASO) ISIS 838707 的生殖毒理学特性。在雄性和雌性小鼠交配前、交配期和妊娠期皮下注射 ISIS 838707,剂量分别为 0、5、10 和 20 mg/kg/周。重点研究领域包括生育能力、生殖细胞功能、发情周期、输卵管运输、植入、胚胎发育阶段和致畸可能性。我们还研究了毒代动力学和靶 mRNA 敲除效应。所有剂量水平的治疗均耐受性良好,无明显毒性。在剂量≥5 mg/kg/周时,治疗可导致总胆固醇和/或甘油三酯水平下降,同时有效敲除载脂蛋白C-III mRNA(在所有剂量水平下均下降>85%)。毒物动力学分析表明,该药物主要分布在亲代动物的肝脏中,极少分布在胎盘中,没有检测到向胎儿肝脏的转移。尽管存在这些药理作用,但对发育和生殖功能没有明显的不利影响。这些研究结果表明,ISIS 838707 在有效调节载脂蛋白 C-III mRNA 和脂质谱的同时,不会对小鼠的生殖和发育功能产生不良影响。这项研究有助于深入了解 ASO 的安全性和载脂蛋白 C-III 表达的减少,特别是在生殖和发育健康方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Combined Fertility and Developmental Toxicity Study with an Antisense Oligonucleotide Targeting Murine Apolipoprotein C-III mRNA in Mice.

Here, we present the reproductive toxicology profile of ISIS 838707, a GalNAc-conjugated antisense oligonucleotide (ASO) targeting mouse Apolipoprotein C-III (ApoC-III) mRNA. ISIS 838707 was subcutaneously administered during the premating, mating, and gestation periods to male and female mice at 0, 5, 10, and 20 mg/kg/week. Key focus areas included fertility, reproductive cell functions, estrus cycle, tubal transport, implantation, embryo development stages, and teratogenic potential. We also investigated the toxicokinetics and target mRNA knockdown effects. The treatment was well-tolerated at all dose levels, with no overt toxicity. Treatment led to decreased total cholesterol and/or triglyceride levels at doses ≥5 mg/kg/week, concordant with effective knockdown of ApoC-III mRNA (>85% reduction at all dose levels). Toxicokinetic analysis revealed predominant distribution to the liver of parental animals and minimally to the placenta, with no detectable transfer to fetal liver. Despite these pharmacological effects, there were no discernible adverse impacts on developmental and reproductive functions. These findings suggest that ISIS 838707, while effective in modulating ApoC-III mRNA and lipid profiles, does not adversely impact on reproductive and developmental functions in mice. The study contributes insights into the safety profile of ASOs and reduction of ApoC-III expression, particularly in the context of reproductive and developmental health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic acid therapeutics
Nucleic acid therapeutics BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
7.60
自引率
7.50%
发文量
47
审稿时长
>12 weeks
期刊介绍: Nucleic Acid Therapeutics is the leading journal in its field focusing on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal examines many new approaches for using nucleic acids as therapeutic agents or in modifying nucleic acids for therapeutic purposes including: oligonucleotides, gene modification, aptamers, RNA nanoparticles, and ribozymes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信