Jéssica Moreira de Carvalho, Leila Moreira de Carvalho, Thayse Cavalcante da Rocha, Mércia de Sousa Galvão, Mayka Reghiany Pedrão, Ana Lúcia da Silva Côrrea Lemos, Marta Suely Madruga
{"title":"Jerked beef as an ultraprocessed convenience food: Desalting strategies to minimize the impact on lipid and protein oxidation.","authors":"Jéssica Moreira de Carvalho, Leila Moreira de Carvalho, Thayse Cavalcante da Rocha, Mércia de Sousa Galvão, Mayka Reghiany Pedrão, Ana Lúcia da Silva Côrrea Lemos, Marta Suely Madruga","doi":"10.1111/1750-3841.17464","DOIUrl":"10.1111/1750-3841.17464","url":null,"abstract":"<p><p>Jerked beef (JB) is a high-protein convenience food but shows high degree of oxidation owing to its severe ultraprocessing. This study aimed to investigate the effect of desalting processes on oxidative stability of JB. JB were submitted to five desalting procedures: immersion in water at room temperature for 12 h without changing the water (AT12); immersion in water at room temperature for 12 h followed by boiling for 30 min and changing the water between the two procedures (AT12 + C30); immersion in boiled water for 10, 20, and 30 min (C10, C20, and C30, respectively). The desalted JB samples were refrigerated (vacuum packed and stored at 1 ± 1°C) and analyzed at 0 and 60 days. The samples without desalting were used as a control group. AT12 samples had the lowest lipid oxidation (0.05 and 0.07 mg of MDA kg<sup>-1</sup>, at T60 and T0, respectively). AT12 + C30 had the lowest NaCl content (2.8 and 3.3 g 100 g<sup>-1</sup>, at T0 and T60, respectively). C10, C20, and C30 showed a lower level of total carbonyls (p < 0.05) (0.04-0.13 nmol mg<sup>-1</sup> protein), compared to control (0.53-0.93 nmol mg<sup>-1</sup> protein in T0 and T60, respectively). Only boiled, desalted meats showed the volatile compound benzaldehyde. Higher concentration of monounsaturated, polyunsaturated, and total unsaturated fatty acids in JB desalted only in boiling water (C10, C20, and C30), compared to control (p < 0.05). AT12 is the best process to use, with regards to lipid oxidative stability, hardness, and NaCl content. Therefore, we conclude that it is possible to offer commercially desalted JB, as a convenience ultraprocessed product. PRACTICAL APPLICATION: Lipid oxidation is accelerated when desalting jerked beef (JB) with boiling water. Desalted JB in boiling water had detectable concentrations of benzaldehyde. •Desalting in water at 25°C/12 h resulted in JB with better oxidative stability.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trypsin from digestive tract of harpiosquillid mantis shrimp: Molecular characteristics and the inhibition by chitooligosaccharide and its catechin conjugate.","authors":"Mallikarjun Chanchi Prashanthkumar, Umesh Patil, Ajay Mittal, Jirakrit Saetang, Bin Zhang, Soottawat Benjakul","doi":"10.1111/1750-3841.17520","DOIUrl":"10.1111/1750-3841.17520","url":null,"abstract":"<p><p>Trypsin from the digestive tract of harpiosquillid mantis shrimp (HMS) was purified using ammonium sulfate precipitation and a soybean trypsin inhibitor-CNBr-activated Sepharose 4B affinity column. The purified trypsin (PTRP-HMS) had a purity of 30.4-fold, and a yield of 14.5% was obtained. PTRP-HMS had the molecular weight of 23.0 kDa as examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and only one isoform was detected by native-PAGE. Its optimal temperature and pH were 55°C and 8.5, respectively. TLCK almost completely inhibited the activity of trypsin. The PTRP-HMS had a Michaelis-Menten constant (K<sub>m</sub>) and catalytic constant (K<sub>cat</sub>) of 0.87 mM and 13.04 s<sup>-1</sup>, respectively, toward Nα-benzoyl-l-arginine 4-nitroanilide hydrochloride. When chitooligosaccharide (COS) and COS-catechin (COS-CAT) conjugates were examined for inhibition toward the PTRP, the latter exhibited higher efficacy in inhibiting the trypsin. Both COS and COS-CAT conjugate showed mixed-type inhibition kinetics. As a consequence, COS and COS-CAT conjugate could be used as natural additives for inhibiting trypsin in whole HMS, thus retarding the softening and lengthening the shelf-life of HMS during the iced storage. PRACTICAL APPLICATION: Harpiosquillid mantis shrimp (HMS) is of high demand due to its delicacy. However, its meat undergoes rapid softening within 2-3 days when stored in ice. Understanding causative proteolytic enzymes, especially trypsin from digestive tract, paves a way for preventing their negative impact on HMS eating quality. Employment of safe inhibitors, for example, chitooligosaccharide (COS) or COS conjugated with catechin, could inhibit HMS trypsin. Overall, softening of whole HMS containing trypsin in its digestive tract can be impeded, especially when treated with COS-CAT. This finding is beneficial for the HMS local vendor or exporter, in which HMS quality can be maintained.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A nonlinear association between total selenium intake and blood selenium concentration: An analysis based on the National Health and Nutrition Examination Survey 2011-2018.","authors":"Ya-Zhi Bai, Jia-Meng Li, Shuang-Qing Zhang","doi":"10.1111/1750-3841.17502","DOIUrl":"10.1111/1750-3841.17502","url":null,"abstract":"<p><p>Diets are the major sources of selenium (Se) and biomonitoring Se is used for the assessment of Se status. The present study explored the association between Se intake and blood Se concentration from the National Health and Nutrition Examination Survey 2011-2018 data for optimizing Se reference intakes among American adults and interpreted the data in the context of exposure guidance values. Weighted linear regression models were conducted to evaluate the association between Se intake and blood Se concentration. Restricted cubic spline models were employed to explore the dose-response association between total Se intake and blood Se concentration. Blood Se concentrations were compared to biomonitoring equivalents established for exposure guidance values. For gender, race, educational status, poverty income ratio, body mass index, smoking status, dietary Se intake, and total Se intake, significant differences were observed among quartiles of blood Se concentration. There was no significant difference for age and alcohol use. There was a positive association between dietary Se intake and blood Se concentration although the association was not statistically significant following the adjustments for covariates. When the associations between total Se intake and blood Se concentration were assessed, no statistically significant relationship was found. The restricted cubic spline supported a significant nonlinear association between total Se intake and blood Se concentration with/without the adjustments of covariates. The present work displayed a baseline for Se exposure among American adults. Considering the sex difference in dietary Se and blood Se concentration, it is necessary to establish gender-based Se reference intakes.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weizmannia coagulans BC99 affects valeric acid production via regulating gut microbiota to ameliorate inflammation and oxidative stress responses in Helicobacter pylori mice.","authors":"Shirui Zhai, Yinyin Gao, Yiru Jiang, Yuwan Li, Qiuxia Fan, Shanshan Tie, Ying Wu, Shaobin Gu","doi":"10.1111/1750-3841.17514","DOIUrl":"10.1111/1750-3841.17514","url":null,"abstract":"<p><p>Helicobacter pylori is a highly prevalent pathogen in human gastric mucosa epithelial cells with strong colonization ability. Weizmannia coagulans is a kind of active microorganism that is beneficial to the improvement of host gut microbiota balance and can prevent and treat intestinal diseases. We investigated the beneficial effects of W. coagulans BC99 in H. pylori infected mice and measured inflammation response, oxidative stress, and gut microbiota. Results showed that BC99 could alleviate the gastric inflammation, inhibit the increasing of inflammation parameters endotoxin, interleukin-10, transforming growth factor-β, and interferon-γ and oxidative stress myeloperoxidase and malondialdehyde, promote the levels of superoxide dismutase and catalase. Furthermore, 16S rRNA gene sequencing analysis revealed that BC99 reversed the change of gut microbiota by reducing the abundance of Olsenella, Candidatus_Saccharimonas, Monoglobus, and increasing the abundance of Tyzzerella. Meanwhile, BC99 caused elevated levels of Ligilactobacillus and Lactobacillus. In view of the beneficial effect of BC99 on the content of short-chain fatty acid, valeric acid with sodium valerate interfered with H. pylori infection in mice found that valeric acid had a good restorative effect of H. pylori infection relating inflammation and oxidative stress responses. These results suggest that W. coagulans BC99 can be used as a potential probiotic to prevent and treat H. pylori infection by regulating the inflammation, oxidative stress, and gut microbiota.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chiao-An Wang, Helen Onyeaka, Taghi Miri, Fakhteh Soltani
{"title":"Chlorella vulgaris as a food substitute: Applications and benefits in the food industry.","authors":"Chiao-An Wang, Helen Onyeaka, Taghi Miri, Fakhteh Soltani","doi":"10.1111/1750-3841.17529","DOIUrl":"10.1111/1750-3841.17529","url":null,"abstract":"<p><p>Chlorella vulgaris, a freshwater microalga, is gaining attention for its potential as a nutritious food source and dietary supplement. This review aims to provide a comprehensive discussion on C. vulgaris, evaluating its viability as a food substitute in the industry by exploring the nutritional value and application of C. vulgaris in the food industry. Rich in protein, lipids, carbohydrates, vitamins, and minerals, Chlorella offers substantial nutritional benefits, positioning it as a valuable food substitute. Its applications in the food industry include incorporation into smoothies, snacks, and supplements, enhancing the nutritional profile of various food products. The health benefits of Chlorella encompass antioxidant activity, immune system support, and detoxification, contributing to overall well-being. Despite these advantages, the commercialization of Chlorella faces significant challenges. These include variability in antibacterial activity due to strain and growth conditions, high production costs, contamination risks, and sensory issues such as unpleasant taste and smell. Additionally, Chlorella can accumulate heavy metals from its environment, necessitating stringent quality control measures. Future prospects involve improving Chlorella strains through genetic manipulation to enhance nutrient content, developing cost-effective culture systems, and exploring advanced processing techniques like pulsed electric fields for better digestibility. Addressing sensory issues through flavor-masking strategies and employing environmental management practices will further support Chlorella's integration into the food industry. Although C. vulgaris shows great potential as a nutritious food ingredient, overcoming existing challenges and optimizing production methods would be crucial for its successful adoption and widespread use.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hadis Amiri, Bahare Shabanpour, Parastoo Pourashouri, Mahboobeh Kashiri
{"title":"Preparation of functional supplement powder using nanoliposome-containing marine bioactive compounds.","authors":"Hadis Amiri, Bahare Shabanpour, Parastoo Pourashouri, Mahboobeh Kashiri","doi":"10.1111/1750-3841.17543","DOIUrl":"10.1111/1750-3841.17543","url":null,"abstract":"<p><p>The demand for marine bioactive compounds as therapeutic agents in supplements or functional foods has increased. However, their instability, bitter taste, and potential degradation during digestion have hindered their widespread use. To overcome these problems, a functional supplement powder was produced using the encapsulation technique of nanoliposomes containing shrimp lipid extract, fish oil (FO), and fish protein hydrolysate. Chitosan and whey protein concentrate (WPC) were used to coat the nanoliposomes in mono/bilayer and composite forms, followed by freeze-drying for 72 h. The physicochemical characteristics, nutritional, in vitro release, and sensory evaluation were investigated. The WPC-monolayer treatment exhibited the highest solubility (28.83 mg/100 g), encapsulation efficiency (97.67%), and polyunsaturated fatty acids (PUFAs). Although the mono/bilayer treatments of whey protein showed lower docosahexaenoic acid and eicosapentaenoic acid than FO, they presented a favorable amino acid profile. Compared to acidic stomach conditions, the release in the intestine was higher. Incorporating 1.5 g of the supplement powder per 100 g of milk can meet an individual's daily nutritional needs for essential amino acids and PUFAs. Therefore, encapsulating marine bioactive compounds in liposomal carriers could be a beneficial approach to their direct use as a nutritious powder.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect and mechanism of different exogenous biomolecules on the thermal-induced gel properties of surimi: A review.","authors":"Xiaoyun Zhao, Ting Mei, Bing Cui","doi":"10.1111/1750-3841.17516","DOIUrl":"10.1111/1750-3841.17516","url":null,"abstract":"<p><p>Surimi products are favored by domestic and foreign consumers due to their distinctive gelatinous texture, rich nutrition, and convenient consumption. Gel properties are key evaluation indicators for the quality of surimi products, which was mainly determined by the gel-forming ability of the myofibrillar protein (MP). In recent years, the surimi processing industry has faced challenges in product quality that limits the further development, and how to effectively improve the gel properties of surimi products has become one of the key scientific problems to be solved in surimi processing industry. A viable strategy for improving the product quality involves combining surimi with exogenous additives, such as proteins, polysaccharides, and lipids, to enhance the gel-forming ability of MP. At present, there is limited literature review to systematically investigate the role of these exogenous additives in interacting with MPs in surimi gel system and their effect on the gel properties of heat-induced surimi. Therefore, in this review, we systematically discussed the formation mechanism and influencing factors of surimi gel, the interactions of exogenous biomolecules (proteins, polysaccharides, and lipids) with surimi protein, as well as their effects on the gel properties of surimi product. The aim of this review was to help us with a better understanding for the intrinsic action mechanisms of complex surimi system and provide some theoretical guidance for the improvement of gel quality and development of surimi products.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ran Zhang, Zhumei Du, Zhiwei Li, Yuxi Feng, Xuebing Yan
{"title":"Improving the bioactivity of water-soluble alfalfa saponins using biotransformation.","authors":"Ran Zhang, Zhumei Du, Zhiwei Li, Yuxi Feng, Xuebing Yan","doi":"10.1111/1750-3841.17523","DOIUrl":"https://doi.org/10.1111/1750-3841.17523","url":null,"abstract":"<p><p>Medicago sativa L. is gaining attention as a sustainable plant-based food protein. Alfalfa saponins (ASs) typically exist in a glycosylated form in nature, which has poor cell membrane permeability, while the deglycosylated saponins may show better bioactivity. The AS was deglycosylated by β-glucosidase from Aspergillus niger, and the chemical structures and biological activities, including in vivo assays, of AS and deglycosylated AS (DAS) were determined. The results showed that the half maximal inhibitory concentration for 2,2-diphenyl-1-picrylhydrazyl inhibition of DAS was 29.5 µg/mL, demonstrating a significantly higher reducing capacity compared to AS (p < 0.05). The DAS induced 33.8% antibacterial activity against Escherichia coli and enhanced the proliferation of human airway epithelial cells (BEAS-2B) at a concentration of 125 µg/mL. In vivo experiments on C57BL/6 mice fed a high-fat diet demonstrated that high-level DAS treatment produced significantly greater hypolipidemic effects compared to AS (p < 0.05). Thus, the AS can be deglycosylated, which leads to an improvement in biological activity, particularly since the DAS exhibits significantly enhanced hypolipidemic activity. PRACTICAL APPLICATION: Alfalfa saponins were deglycosylated by β-glucosidase from Aspergillus niger, which contributed to increased bioactivity, particularly its hypolipidemic activity.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A boom in manuscript submissions","authors":"Rich Hartel","doi":"10.1111/1750-3841.17469","DOIUrl":"10.1111/1750-3841.17469","url":null,"abstract":"<p>It is not uncommon for manuscript submission levels to vary depending on external circumstances. For example, during the Covid pandemic, submissions increased significantly as researchers cleared out their unpublished data. That was followed by a small dip in submissions last year, again related to the pandemic—perhaps due to a time lag between renewal of experimentation and publication.</p><p>We are now out of that dip and have seen a startling increase in submissions over the past year, to the point where all of our editors are maxed out. Many of our Associate Editors (AEs) have over 10 manuscripts in their system at the moment, beyond anyone's expectations.</p><p>For historical perspective, the table shows the submission trends since 2015. There was a general, slow increase and then a plateau between 2015 and 2019. During Covid, starting in 2020, everyone was writing up old research and new reviews as a means of keeping busy, so submissions trended upward. But then in 2022, we had a “Covid dip,” perhaps because researchers were once more getting back into the lab to generate data and not necessarily writing as much. The number of submissions rose last year, to 1941, about where we were in 2016. There was an average of five manuscripts submitted per day last year. As of September 5, this year, we already have 1952 submissions, with an average daily rate of 7.8. At this pace, we expect to see a record number of submissions, even above the Covid years. If submissions continue at this rate, we project over 2800 manuscript submissions this year.\u0000\u0000 </p><p>We are scratching our head trying to understand what is driving this increase. It is not just us, though; many journals are seeing this increase. We hear that other publishers and journals are seeing an increase in submissions of 18%–20%. Our increase will likely be greater than that, maybe as much 35% over the 2023 submissions (and still 6% greater than our boom year in 2021).</p><p>One of our contacts postulated that this spike could be the result of authors choosing to publish in journals long known to uphold high standards of research integrity, such as society journals. They stated that authors appear to be moving away from Frontiers, MDPI, the former Hindawi journals, and other born-OA publishers who were hit hard by paper mills, AI-generated, and poorly reviewed papers.</p><p>What this boom has meant to us is that the entire editorial staff is overwhelmed. The Scientific Editors (SEs) have many more papers to assign, to the same AEs, who are all overloaded. Finding reviewers for all these submissions requires an ever-expanding pool of willing reviewers. In response to this surge in submissions, we have recently added one new SE and five new AEs. We will be evaluating candidates for Editorial Board (EB) members-at-large as we close out the year, with hopes of adding up to 10 new people, selected based on all the factors discussed in my March and April editorials. Specifically, w","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"89 11","pages":"6789-6790"},"PeriodicalIF":3.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1750-3841.17469","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shujuan Jiang, Jiaxin Zhang, Mengyuan Zhang, Fang Qian, Guangqing Mu
{"title":"Characteristics of whey protein concentrate/egg white protein composite film modified by transglutaminase and its application on cherry tomatoes.","authors":"Shujuan Jiang, Jiaxin Zhang, Mengyuan Zhang, Fang Qian, Guangqing Mu","doi":"10.1111/1750-3841.17506","DOIUrl":"https://doi.org/10.1111/1750-3841.17506","url":null,"abstract":"<p><p>In order to obtain food packaging film with better performance, whey protein concentrate (WPC) and egg white protein (EWP) were used as film-forming substrates, and its film properties were modified by transglutaminase (TG). Then the effect of TG on the mechanical, physical, barrier, and microstructural properties of the WPC/EWP composite biodegradable film was investigated, and its preliminary application potential was explored. Compared to WPC and EWP films, WPC/EWP composite film had higher transmittance, tensile strength (TS), and thermal stability. Fluorescence results showed that the film experienced fluorescence quenching after TG treatment. Fourier transform infrared and x-ray diffraction results showed that WPC and EWP had good compatibility in the biodegradable film, the hydrogen bond interaction of film was increased due to TG, resulting in an increase in TS. Meanwhile, the water vapor permeability and contact angle of WPC/EWP film treated with TG at 5 U/g protein increased by 28% and 76.1%, respectively. Besides, the WPC/EWP biodegradable film modified by TG (TG-W/E) was applied as a coating film on cherry tomatoes, effectively reducing the weight loss rate during storage from 14.2% to 10.8%. Furthermore, indexes, such as solid content, spoilage rate, hardness, pH, and lycopene, showed that the film had a good preservation effect on cherry tomatoes. To conclude, the appropriate addition of TG has a positive effect on the film properties of the WPC/EWP biodegradable film, which is beneficial to the development and utilization of protein-based film. WPC/EWP biodegradable film modified by TG has a great application prospect in extending the shelf life of fruit and vegetable.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}