{"title":"热成像与迁移学习结合对菠萝品种分类的比较分析","authors":"Norhashila Hashim, Maimunah Mohd Ali","doi":"10.1111/1750-3841.70530","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Advanced intelligent systems are becoming a significant trend, especially in the classification of tropical fruits due to their unique flavor and taste. As one of the most popular tropical fruits worldwide, pineapple (<i>Ananas comosus</i>) has a great chemical composition and is high in nutritional value. A non-destructive method for the determination of pineapple varieties was developed, which utilized thermal imaging and deep learning techniques. This study presents a comparative analysis of three deep learning models, including ResNet, VGG16, and InceptionV3, for the rapid classification of pineapple varieties using thermal imaging and transfer learning. The dataset comprises 3240 thermal images from three different pineapple varieties, including Moris, Josapine, and N36, under controlled temperature conditions (5°C, 10°C, and 25°C), resulting in a total of three classification classes. All convolutional neural network (CNN) architectures were fine-tuned, and data augmentation techniques were applied to improve model generalization. The efficiency of hyperparameters was evaluated to improve the model accuracy, whereas the data augmentation was carried out to avoid model overfitting. The highest classification accuracy of 99 % was achieved via InceptionV3. The precision, recall, and F1-score demonstrate promising results with the values higher than 0.85 for all pineapple varieties. This approach demonstrated that transfer learning with CNNs is significantly promising as a feature extraction method for the determination of physicochemical properties in pineapple fruit. An ablation study confirmed the added benefit of using both data augmentation and transfer learning. While model architecture innovation was not the primary goal, this work contributes by benchmarking established CNN models for agricultural thermal imaging applications.</p>\n </div>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 9","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Analysis on the Classification of Pineapple Varieties Using Thermal Imaging Coupled With Transfer Learning\",\"authors\":\"Norhashila Hashim, Maimunah Mohd Ali\",\"doi\":\"10.1111/1750-3841.70530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Advanced intelligent systems are becoming a significant trend, especially in the classification of tropical fruits due to their unique flavor and taste. As one of the most popular tropical fruits worldwide, pineapple (<i>Ananas comosus</i>) has a great chemical composition and is high in nutritional value. A non-destructive method for the determination of pineapple varieties was developed, which utilized thermal imaging and deep learning techniques. This study presents a comparative analysis of three deep learning models, including ResNet, VGG16, and InceptionV3, for the rapid classification of pineapple varieties using thermal imaging and transfer learning. The dataset comprises 3240 thermal images from three different pineapple varieties, including Moris, Josapine, and N36, under controlled temperature conditions (5°C, 10°C, and 25°C), resulting in a total of three classification classes. All convolutional neural network (CNN) architectures were fine-tuned, and data augmentation techniques were applied to improve model generalization. The efficiency of hyperparameters was evaluated to improve the model accuracy, whereas the data augmentation was carried out to avoid model overfitting. The highest classification accuracy of 99 % was achieved via InceptionV3. The precision, recall, and F1-score demonstrate promising results with the values higher than 0.85 for all pineapple varieties. This approach demonstrated that transfer learning with CNNs is significantly promising as a feature extraction method for the determination of physicochemical properties in pineapple fruit. An ablation study confirmed the added benefit of using both data augmentation and transfer learning. While model architecture innovation was not the primary goal, this work contributes by benchmarking established CNN models for agricultural thermal imaging applications.</p>\\n </div>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\"90 9\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://ift.onlinelibrary.wiley.com/doi/10.1111/1750-3841.70530\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://ift.onlinelibrary.wiley.com/doi/10.1111/1750-3841.70530","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A Comparative Analysis on the Classification of Pineapple Varieties Using Thermal Imaging Coupled With Transfer Learning
Advanced intelligent systems are becoming a significant trend, especially in the classification of tropical fruits due to their unique flavor and taste. As one of the most popular tropical fruits worldwide, pineapple (Ananas comosus) has a great chemical composition and is high in nutritional value. A non-destructive method for the determination of pineapple varieties was developed, which utilized thermal imaging and deep learning techniques. This study presents a comparative analysis of three deep learning models, including ResNet, VGG16, and InceptionV3, for the rapid classification of pineapple varieties using thermal imaging and transfer learning. The dataset comprises 3240 thermal images from three different pineapple varieties, including Moris, Josapine, and N36, under controlled temperature conditions (5°C, 10°C, and 25°C), resulting in a total of three classification classes. All convolutional neural network (CNN) architectures were fine-tuned, and data augmentation techniques were applied to improve model generalization. The efficiency of hyperparameters was evaluated to improve the model accuracy, whereas the data augmentation was carried out to avoid model overfitting. The highest classification accuracy of 99 % was achieved via InceptionV3. The precision, recall, and F1-score demonstrate promising results with the values higher than 0.85 for all pineapple varieties. This approach demonstrated that transfer learning with CNNs is significantly promising as a feature extraction method for the determination of physicochemical properties in pineapple fruit. An ablation study confirmed the added benefit of using both data augmentation and transfer learning. While model architecture innovation was not the primary goal, this work contributes by benchmarking established CNN models for agricultural thermal imaging applications.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.