Shuiqiang Duan, Minggang Li, Jiaming Li, Tongxi Li, Changhua Nie, Zumao Yang, Jun Hu
{"title":"Research on magnetostrictive liquid level gauge for water level measurement of steam generator","authors":"Shuiqiang Duan, Minggang Li, Jiaming Li, Tongxi Li, Changhua Nie, Zumao Yang, Jun Hu","doi":"10.1016/j.net.2024.08.049","DOIUrl":"https://doi.org/10.1016/j.net.2024.08.049","url":null,"abstract":"The accurate measurement of the water level on the secondary side of the steam generator (SG) plays a crucial role in the safe and stable operation of the primary and secondary circuits of the nuclear power plant. In order to study the feasibility of applying the magnetostrictive liquid level gauge to the water level measurement of SG, the measurement results of the magnetostrictive liquid level gauge under the steady and transient conditions were obtained and compared with the traditional differential pressure liquid level gauge. The results indicated that the magnetostrictive liquid level gauge had good measurement accuracy under the cold-steady condition, thermal-steady condition and transient pressurization condition. The design parameters of float and operating parameters were necessary to correct the measurement results of magnetostrictive water level gauge. The measurement results under the transient depressurization condition were affected by the fluid movement in the container, resulting in a decrease in measurement accuracy. The results indicated that the magnetostrictive liquid level gauge had the potential to be used for water level measurement of SG in nuclear power plant.","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jong-Bae Hwang, Injin Sa, Eung-Seon Kim, Dong-Hyun Lee
{"title":"High temperature mechanical properties of diffusion welded alloy 800H","authors":"Jong-Bae Hwang, Injin Sa, Eung-Seon Kim, Dong-Hyun Lee","doi":"10.1016/j.net.2024.08.046","DOIUrl":"https://doi.org/10.1016/j.net.2024.08.046","url":null,"abstract":"High temperature mechanical properties of diffusion welded Alloy 800H was investigated to fabricate a printed circuit heat exchanger (PCHE) for high temperature reactor (HTR) systems. Surface treatment was performed on Alloy 800H to transform the solubility product () to exceed the reaction quotient (). The surface treatment facilitated the grain boundary migration across the interface. The yield strengths exceeded the values described in ASME Section III Division 5 Table HBB-I-14.5 up to 760 °C, while the tensile strengths were comparable to Table HBB-3225-1 up to 700 °C. At 760 °C, the tensile strength was ∼30 MPa lower than the code. The stress-to-rupture values exceeded the expected minimum stress-to-rupture values of Alloy 800H described in Table HBB-I-14.6C. The ductility of the diffusion weldment acquired from the tensile test was comparable to the as-received Alloy 800H. Meanwhile, the formation of the secondary precipitates on the interface during the stress-to-rupture test deteriorated the ductility of the diffusion weldment, which induced intergranular fracture.","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin-Mok Hur, Jungho Hur, Yung-Zun Cho, Chang Hwa Lee
{"title":"Thermodynamic study on the separation of strontium and barium from LWR spent fuel","authors":"Jin-Mok Hur, Jungho Hur, Yung-Zun Cho, Chang Hwa Lee","doi":"10.1016/j.net.2024.08.050","DOIUrl":"https://doi.org/10.1016/j.net.2024.08.050","url":null,"abstract":"The separation of high heat load fission products, such as alkaline earth metals, from nuclear spent fuel can significantly reduce the burden of spent fuel disposal. This study investigates the feasibility of separating strontium and barium from light water reactor spent fuel through non-aqueous processes. Process flows were developed for treating spent nuclear fuel by heating it at high temperatures to remove volatile nuclides, followed by chlorination with a chlorinating agent. The chlorinated products were then treated with a precipitating agent in LiCl-KCl molten salt for further separation. The remaining liquid was distilled to recover strontium and barium. Thermodynamic equilibrium calculations were conducted for the process flows. Under the conditions of the process flows, the chlorinating agents MgCl and NHCl both converted SrO and BaO entirely into SrCl and BaCl, respectively. The precipitating agent LiCO exhibited superior separation effectiveness compared to LiPO. Thermodynamic calculations indicate that strontium and barium recovered by MgCl chlorination, LiCO precipitation, and distillation will contain 0.18 %, 1.06 %, and 0.32 % impurities in terms of mass, radioactivity, and decay heat, respectively.","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental and numerical study on seismic behaviors of SRC column-RC slab joints in NPP","authors":"Dayang Wang, Qiang Liu, Yuanqi Song, Yong Zhu, Yongshan Zhang","doi":"10.1016/j.net.2024.08.045","DOIUrl":"https://doi.org/10.1016/j.net.2024.08.045","url":null,"abstract":"This paper presents an innovative design of a steel-reinforced concrete (SRC) column-reinforced concrete (RC) slab joint based on a concept of the strong column and weak slab. In this study, two 1:2 reduced scale SRC column-RC slab joint specimens are designed and fabricated for horizontal cyclic loading tests based on side slab-column joints of an auxiliary plant of a nuclear power plant. In order to ensure the ease of construction and stability of the connection between the reinforcement and the section steel, one structure (SR-2) with steel sleeves welded to the section steel and connected to the reinforcement in the joint area and the other structure (SR-1) with a stiffened steel plate (SSP) in the connection area on the basis of SR-2 were fabricated and tested in order to investigate the structural strengthening the joint. Based on the test results, the damage modes, hysteresis performance, energy dissipation capacity and stiffness degradation of the specimens were studied. A finite element analysis (FEA) model was developed and verified with the experimental results. The verified FEA model was used for parametrical study on effects of thickness, outer dimensions of SSP, a longitudinal reinforcement ratio in the RC slab and an axial pressure ratio. The test results show that the damage mode of specimens is shear failure at the RC slab and the damage of the SRC column is minor, which is in line with the design concept of the strong column and weak slab. The parametric study shows that increasing the thickness and outer size of SSP can improve the load-bearing capacity and initial stiffness of joints.","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ke Wu, Jun Zhang, Yong Cheng, Qingxi Yang, Hongtao Pan, Tao Wang, Aiming Liu, Hao Han
{"title":"The design and implementation of automated maintenance system for the first-wall based on dual-arm manipulator","authors":"Ke Wu, Jun Zhang, Yong Cheng, Qingxi Yang, Hongtao Pan, Tao Wang, Aiming Liu, Hao Han","doi":"10.1016/j.net.2024.08.039","DOIUrl":"https://doi.org/10.1016/j.net.2024.08.039","url":null,"abstract":"This paper proposed a framework of a dual-arm-based robotic maintenance system, including visual recognition, trajectory planning, force feedback control and master–slave control. To meet the requirements of automated maintenance, we proposed an improved design for the structures of the first wall tiles and support boards, and established a complete communication structure for the maintenance system that can adapt to different hardware versions. Based on the proposed framework, an experimental platform with dual-arm manipulator was established to demonstrate the maintenance scenario of the FW of the blanket in Vacuum Vessel (VV). The experimental result verified the feasibility of automated robotic maintenance system applied to the future fusion reactor.","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qianxu Wang, Yuanlai Xie, Huihui Hong, Yang Zhu, Fang Wang, Kun Tian, Bin Li
{"title":"Analysis and optimization of LN2 two-phase flow in CRAFT NNBI cryopump","authors":"Qianxu Wang, Yuanlai Xie, Huihui Hong, Yang Zhu, Fang Wang, Kun Tian, Bin Li","doi":"10.1016/j.net.2024.08.047","DOIUrl":"https://doi.org/10.1016/j.net.2024.08.047","url":null,"abstract":"As an important component of Negative ion based Neutral Beam Injector (NNBI), the cryopump mainly provides a suitable vacuum environment for beam generation and transmission. In the paper, Liquid nitrogen (LN2) pipe structure models of two cryopumps were established for simulation and experimental studies. Thermal analysis of the thermal radiation shielding baffle (LN2 cooling) was carried out by Ansys steady-state thermal analysis software, while Fluent was used to simulate the two-phase flow in the LN2 pipeline, then the pressure drops, temperature, velocity, gas-phase volume fraction, and other parameters of the two pipeline structures were analyzed and compared. The simulation results show that the optimized structure B can reduce the pressure drop by 3 bar, the outlet temperature of structure A is 78.8 K, the outlet temperature of structure B is 79.2 K, the temperature difference is 0.4 K. The outlet velocity increases from 2.067 m/s to 4.947 m/s for Structure A, and from 1.096 m/s to 6.614 m/s for Structure B. The experiment results show that the outlet temperature of structure A is 79.4 K, meanwhile the outlet temperature of structure B is 80.1 K, the optimized structure B can reduce the pressure drop about 3 bar.","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conceptional design of photoneutralization test system for negative ion-based neutral beam injection","authors":"Hui-hui Hong, Li-zhen Liang, Yuan-lai Xie, Qian-xu Wang, Zhuo Pan, Yao Jiang","doi":"10.1016/j.net.2024.08.024","DOIUrl":"https://doi.org/10.1016/j.net.2024.08.024","url":null,"abstract":"Neutral beam injection is one of the effective heating methods in the field of magnetic confinement fusion, and neutralization is the most crucial link in the case of negative ions. To further increase the neutral beam injection power, improve the long pulse operation capability, and optimize the efficiency of the NNBI system, further research and verification about the neutralization mode are needed. Theoretically, photoneutralization can achieve more than 90 % neutralization efficiency. However, maintaining stable operation of the megawatt laser cavity over extended periods poses corresponding challenges. Additionally, the cost associated with laser target surpasses the benefit gained from increased neutralization efficiency, leading to its lack of practical application thus far. This paper proposes a solution to these issues by designing a single-channel, multi-fold photoneutralization verification system utilizing the CRAFT NNBI one-quarter and one-half size negative source test equipment. An outline of the system's test and diagnostics approach is provided. Key parameters such as laser target thickness, negative ion energy, beam shape and efficiency of the photoneutralization system are numerically calculated. Combined with the experimental data of the negative source test platform, theoretical calculations show that the neutralization efficiency can achieve 63 % with the system efficiency exceeding 40 %. Even by increasing the incident laser power or the number of reflections, neutralization efficiency can be increased to 95 %, with a simultaneous increase in system efficiency to 60 %. Maintaining efficiency while increasing incident laser power could reduce the number of reflections to approximately ten, reaching an acceptable threshold. However, this adjustment will increase the irradiation density of a single mirror from 660W/mm increases to 3000W/mm. This paper methodically designs a practical laser neutralization verification platform, which is expected to substantially improve the neutralization efficiency, and facilitate practical application and validation.","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sherif A. Taalab , Mohamed Y. Hanfi , Mohamed S. Ahmed , Diaa A. Saadawi , Ahmed K. Sakr , Mayeen Uddin Khandaker , Mahmoud R. Khattab
{"title":"Geochemical evaluation and hazard indices due to radioactive minerals associated with granitic areas","authors":"Sherif A. Taalab , Mohamed Y. Hanfi , Mohamed S. Ahmed , Diaa A. Saadawi , Ahmed K. Sakr , Mayeen Uddin Khandaker , Mahmoud R. Khattab","doi":"10.1016/j.net.2024.08.027","DOIUrl":"10.1016/j.net.2024.08.027","url":null,"abstract":"<div><div>The present study employed statistical methods to evaluate the possible radiological hazards linked to granitic rocks-bearing mineralization in the ELgarra region of Egypt. The geological structures influence the occurrence of uranium mineralization in this area and are primarily associated with altered granites. Gamma-ray spectrometry was utilized to examine the quantities of <sup>238</sup>U, <sup>232</sup>Th, and <sup>40</sup>K in granitic rock samples. The recorded levels of radioisotope activity concentrations in the analyzed regions ranged from 374 to 1740 Bq.kg<sup>−1</sup> <sup>238</sup>U, with an average of 1018 Bq.kg<sup>−1</sup>. For <sup>232</sup>Th, the range was between 71 and 163 Bq.kg<sup>−1</sup>, with an average of 119 Bq.kg<sup>−1</sup>. Lastly, for <sup>40</sup>K, the range was 756–1789 Bq.kg<sup>−1</sup>, with an average of 1212 Bq.kg<sup>−1</sup>. The detected levels of <sup>238</sup>U, <sup>232</sup>Th, and <sup>40</sup>K in the examined rock samples were observed to exceed the permissible limits of 35, 45, and 412 Bq.kg<sup>−1</sup>, respectively. The primary radiological risks linked to these granitic rocks were attributed to the gamma rays released by the radioactive elements. Estimations of the radiological hazards in the granitic rocks were made, and statistical approaches were utilized to demonstrate the associations among radionuclides and radiological factors. The assessment confirmed that uranium, potassium, and their respective minerals in the granitic rocks were the key factors contributing to the radiological risks. As a result, the study determined that the granite rocks found in the study area needed precautions to be taken due to their high levels of radioactivity.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaeseok Yoo, Young-jin Oh, Nam-hyun Kim, Soo-ill Lee, Jaepil Ko
{"title":"Multi-step multivariate forecasting of transmission power in NPPs using operational and meteorological data","authors":"Jaeseok Yoo, Young-jin Oh, Nam-hyun Kim, Soo-ill Lee, Jaepil Ko","doi":"10.1016/j.net.2024.08.038","DOIUrl":"https://doi.org/10.1016/j.net.2024.08.038","url":null,"abstract":"As the proportion of renewable energy has increased in the national power grid of Republic of Korea, various efforts are needed to maintain the stability of total power generation. All kinds of power plants, including nuclear power, must notify the grid operation organization of their expected transmission power. Even in NPPs, the accuracy of transmission power forecasting can increase the plant owner's economic benefits as well as the stability of the power grid. The transmission power of a NPP is affected by various plant conditions and environmental conditions, including the temperature of circulating water (sea water). In this study, we explored how to effectively handle the long-term dependence problem and various data characteristics to increase the forecasting accuracy of transmission power in NPPs by introducing a Seq2Seq model with an encoder-decoder structure and an attention mechanism, beyond traditional time series deep learning models, especially LSTM. This approach will improve the accuracy of transmission power forecasting and contribute to a stable power supply. Additionally, the model is expected to provide a realistic and practical solution for the power demand response of power plants.","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Martinez-Reviriego, N. Fuster-Martínez, D. Esperante, M. Boronat, B. Gimeno, C. Blanch, D. González-Iglesias, P. Martín-Luna, E. Martínez, A. Menendez, L. Pedraza, J. Fernández, J. Fuster, A. Grudiev, N. Catalan Lasheras, W. Wuensch
{"title":"High-power performance studies of an S-band high-gradient accelerating cavity for medical applications","authors":"P. Martinez-Reviriego, N. Fuster-Martínez, D. Esperante, M. Boronat, B. Gimeno, C. Blanch, D. González-Iglesias, P. Martín-Luna, E. Martínez, A. Menendez, L. Pedraza, J. Fernández, J. Fuster, A. Grudiev, N. Catalan Lasheras, W. Wuensch","doi":"10.1016/j.net.2024.08.033","DOIUrl":"https://doi.org/10.1016/j.net.2024.08.033","url":null,"abstract":"High-Gradient accelerating cavities are one of the main research lines in the development of compact linear accelerators. However, the operation of such accelerating cavities is currently limited by non-linear electromagnetic effects that are intensified at high electric fields, such as RF breakdowns, dark currents and radiation. A novel normal-conducting High Gradient S-band Backward Travelling Wave accelerating cavity for medical application (v = 0.38c) has been designed and constructed at CERN with a design gradient of 50 MV/m. In this paper, the high-power performance studies of this novel design carried out at the IFIC high-power laboratory are presented, as well as the analysis of the conditioning parameters in combination with numerical simulations.","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}