{"title":"P2Y12-mediated HIV gp120 and ddC-induced neuropathic pain improved by esculin.","authors":"Zhihua Yi, Han Si, Shangdong Liang, Guilin Li, Yifan Dang, Congfa Zhou","doi":"10.1097/WNR.0000000000002125","DOIUrl":"10.1097/WNR.0000000000002125","url":null,"abstract":"<p><p>We studied whether esculin (ES) has the effect of alleviating peripheral neuropathic pain (NP) in rat models of HIV glycoprotein 120 (gp120) together with zalcitabine (2',3'-dideoxycytidine; ddC) treatment and explored the possible mechanism of it. The rats pain behaviors were evaluated by observing the paw withdrawal threshold (PWT) and the paw withdrawal latency (PWL). The rats were divided into a control group, sham group, gp120 combined with a ddC treatment group (gp120& ddC group), gp120&ddC combined with ES treatment group (gp120&ddC+ES group), which ES was administered intragastrically, and gp120&ddC combined with short hair RNA of P2Y12 receptor (rP2Y12) treatment group (gp120&ddC+shP2Y12 group), which shRNA of rP2Y12 was injected intrathecally with a dose of 25 µg/20 µl for every rat, and a negative control plasmid was administered to the gp120&ddC+nc group. Western blotting was used to measure the protein expression levels of the rP2Y12, the nuclear factor of activated T-cells type c1 (NFATc1), phospho-NFATc1 and the C-C motif chemokine ligand 3 (CCL3) in the L4-L6 dorsal root ganglia (DRG). Real-time quantitative PCR (RT-qPCR) was used to test the mRNA expression level of the CCL3. Double-labeling immunofluorescence was used to identify the co-localization of the rP2Y12 with glial fibrillary acidic protein (GFAP) in DRG. Fluorescence imaging with calcium indicator fluo-3 AM (7.5 μM) was performed to observe the change of intracellular calcium concentration ([Ca2+]i). Molecular docking was performed to identify the interaction between rP2Y12 and the ligand ES. We found that accompanied by the attenuation of mechanical allodynia and thermal hyperalgesia, rP2Y12 expression in the gp120+ddC+ES group of rats was downregulated compared with the gp120+ddC ones, as was the coexpression of the rP2Y12 and GFAP of satellite glial cells (SGCs) in DRG, and the CCL3 mRNA levels and protein expression were both decreased. In addition, mechanistic studies have found that there is a docking pocket between ES and the rP2Y12 protein, which causes ES to decrease the [Ca2+]i, thus increasing the phosphorylation level of NFATc1. Taken together, the results suggest that ES can combine with the rP2Y12, inhibit DRG SGCs activation caused by gp120&ddC, reduce [Ca2+]i, and prevent the NFATc1-mediated gene transcription of CCL3, finally relieving NP in rats treated with gp120&ddC.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuroreportPub Date : 2025-01-06DOI: 10.1097/WNR.0000000000002131
Yanfang Chen, Shuangxi Chen, Huiqing Wang, Peng Cao
{"title":"Artemisinin antagonizes cognitive disorder in hyperuricemia through glutamate receptor-interacting protein 1-suppressed pyroptosis.","authors":"Yanfang Chen, Shuangxi Chen, Huiqing Wang, Peng Cao","doi":"10.1097/WNR.0000000000002131","DOIUrl":"10.1097/WNR.0000000000002131","url":null,"abstract":"<p><p>The prevalence of hyperuricemia (HUA) is climbing worldwide and persistent elevation of serum uric acid impairs cognitive function. This study aimed to explore the mechanisms of Artemisinin (Art) antagonizing cognitive disorder in HUA by suppressing pyroptosis. A mouse model of HUA was established by intraperitoneal injection of 300 mg/kg potassium oxonate (PO) in C57BL/6 mice for 14 days. The mice were simultaneously treated with Art, an agonist of pyroptosis Polyphyllin VI (PPVI), or glutamate receptor-interacting protein 1 (GRIP1) knockdown lentiviral plasmid. After treatment, serum uric acid, IL-6, and TNF-ɑ levels were examined, as well as hippocampal IL-1β and IL-18 levels, and the cognitive function of mice was assessed by the Morris water maze test. Pathological changes in the CA1 of the hippocampus were observed. Cleave-caspase-1, GSDMD-N, and GRIP1 protein level in the hippocampus was quantified by western blot. After PO induction, the escape latency and the time spent in the target quadrant increased in mice, cell arrangement in CA1 hippocampus was loose and disorganized, with obvious inflammatory infiltration and serious damage being observed, and the mouse hippocampus had elevated cleaved-caspase-1, GSDMD-N, IL-1β, and IL-18. Art treatment reduced pyroptosis in the hippocampus and improved cognitive disorder in HUA mice. Administration of PPVI aggravated cognitive disorder in Art-treated HUA mice, and Art improved cognitive dysfunction in HUA mice by inhibiting pyroptosis through upregulation of GRIP1. Art blunts pyroptosis in the hippocampus of HUA mice suffering from cognitive disorder by upregulating GRIP1.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuroreportPub Date : 2024-12-24DOI: 10.1097/WNR.0000000000002132
Xinchi Yu, Ellen Lau
{"title":"A finite set of content-free pointers in visual working memory: magnetoencephalography (MEG) evidence.","authors":"Xinchi Yu, Ellen Lau","doi":"10.1097/WNR.0000000000002132","DOIUrl":"10.1097/WNR.0000000000002132","url":null,"abstract":"<p><p>Human visual working memory (VWM) is known to be capacity-limited, but the nature of this limit continues to be debated. Recent work has proposed that VWM is supported by a finite (~3) set of content-free pointers, acting as stand-ins for individual objects and binding features together. According to this proposal, the pointers do not represent features within themselves, but rather bind features represented elsewhere together. The current study set out to test if neural hallmarks resembling these content-free pointers can be observed with magnetoencephalography (MEG). Based on two VWM delay-match-to-sample experiments (N = 20 each) examining memory for simple and complex objects, we report a sustained response in MEG over right posterior cortex whose magnitude tracks the core hypothesized properties of this content-free pointer system: load-dependent, capacity-limited, and content-free. These results provide novel evidence for a finite set of content-free pointers underlying VWM.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuroreportPub Date : 2024-12-24DOI: 10.1097/WNR.0000000000002133
Fateme Derisfard, Zahra Jafarinezhad, Negar Azarpira, Mohammad Reza Namavar, Hadi Aligholi
{"title":"Exosomes obtained from human adipose-derived stem cells alleviate epileptogenesis in the pentylenetetrazol model of epilepsy.","authors":"Fateme Derisfard, Zahra Jafarinezhad, Negar Azarpira, Mohammad Reza Namavar, Hadi Aligholi","doi":"10.1097/WNR.0000000000002133","DOIUrl":"10.1097/WNR.0000000000002133","url":null,"abstract":"<p><p>As exosome therapy is a promising treatment in neurological disorders including epilepsy, the present study aimed to evaluate the effects of exosomes obtained from human adipose-derived stem cells (ADSCs) on pentylenetetrazol (PTZ) model of epilepsy in mice. Thirty adult mice were divided into PTZ, diazepam + PTZ, and exosome (5, 10, and 15 µg) + PTZ groups. The exosomes were administered intranasally 30 min before PTZ injection. The seizure latency, tonic-clonic onset, seizure duration, and mortality protection rate were monitored. Also, the level of hippocampal malondialdehyde (MDA), the oxidative stress marker, was evaluated. Exosomes in 5 and 15 µg concentration significantly increased seizure latency. Only 15 µg of exosomes induced a considerable delay in tonic-clonic onset. Seizure duration was significantly attenuated in the 5 µg exosome group. In addition, the 5-µg exosome indicated the highest mortality protection rate. Furthermore, the MDA level was significantly reduced in all animals treated by exosomes. Exosomes obtained from human ADSCs could alleviate epileptogenesis induced by PTZ maybe through reducing hippocampal oxidative stress.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuroreportPub Date : 2024-12-24DOI: 10.1097/WNR.0000000000002130
Karin Labek, Roberto Viviani
{"title":"Functional imaging of time on task and habituation in passive exposure to faces with emotional expression.","authors":"Karin Labek, Roberto Viviani","doi":"10.1097/WNR.0000000000002130","DOIUrl":"10.1097/WNR.0000000000002130","url":null,"abstract":"<p><p>The amygdala responds to emotional stimuli but habituates at repeated presentation. Much less is known about time-on-task effects during exposure to emotional stimuli in the cortex. Here, we identified the neural substrates that show habituation or cortical decreased activity in a task of repeated passive exposure to faces with negative emotional expressions. We found that in the amygdala, habituation selectively involved the central nucleus and extended posteriorly in the hippocampal-amygdaloid region, consistently with reduced motivational and attentional effects of repeated stimulation. In the cortex, decreases in activity with time on task involved a network including the temporoparietal junction, the postsplenial region, and the ventromedial prefrontal cortex, mostly located at the transition from task activations to deactivations. These effects were analogous to those reported as encoding of social cognition information, suggesting a role in developing task-based representations of input content.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Abnormal metabolites in the dorsolateral prefrontal cortex of female epilepsy patients with migraine without aura.","authors":"Liping Wang, Huaxia Pu, Jingyuan Zhou, Wenyu Liu, Shujiang Zhang, Qiaoyue Tan, Xinyue Wan, Weina Wang, Dong Zhou, Qiang Yue, Qiyong Gong","doi":"10.1097/WNR.0000000000002110","DOIUrl":"10.1097/WNR.0000000000002110","url":null,"abstract":"<p><p>Epilepsy and migraine without aura (MWoA) are often comorbid, but the exact mechanisms are unclear. Magnetic resonance spectroscopy (1H-MRS) may help to understand the neurometabolic mechanisms in patients with epilepsy comorbid with MWoA (EWM). In this prospective cross-sectional study, we recruited 64 female patients, including 24 with EWM, 20 with epilepsy, and 20 with MWoA, as well as 20 age-level-matched and educational-level-matched female healthy controls from our hospital between August 2021 and November 2022. A single-voxel point-resolved spectroscopy sequence was used to acquire spectra of the bilateral dorsolateral prefrontal cortices (DLPFCs). Metabolites were quantified by linear combination model software, and the values were corrected for the partial volume effect of cerebrospinal fluid. MRS data comparisons were performed with multivariate analyses of variance. Correlation analyses were calculated between metabolites and main clinical data. The results showed that N-acetyl aspartate (NAA) was asymmetrical between the bilateral DLPFCs. Both NAA and myoinositol were significantly reduced in EWM than in healthy controls. Choline-containing compounds (Cho) were higher in MWoA than in the other three groups. Correlation analyses revealed that NAA of the right DLPFC and Cho of the bilateral DLPFCs in EWM were negatively related to migraine frequency. In addition, glutamate and glutamine (Glu and Gln, Glx) of the right DLPFC in EWM were negatively correlated with migraine severity. Our findings suggested that comorbid epilepsy and MWoA in female patients can lead to a synergistic reduction of both NAA and myoinositol, reflecting more serious injuries of neurons and glial cells.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":"35 18","pages":"1155-1162"},"PeriodicalIF":1.6,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Propagation effect of the thalamic feed-forward and feed-back inhibition in multi-type coupling models.","authors":"Quanjun Wu, Ranran Li, Yufan Liu, Suyuan Huang, Yuan Chai","doi":"10.1097/WNR.0000000000002111","DOIUrl":"10.1097/WNR.0000000000002111","url":null,"abstract":"<p><p>Seizure waves of epilepsy can propagate in a coupled thalamocortical model, which typically occurs in malfunctioning neuronal networks. However, it remains unclear whether thalamic feed-forward inhibition (FFI) and feed-back inhibition (FBI), the two most important microcircuits in this network, have propagation effects. In this study, we first investigated the importance of the pyramidal neuronal population-thalamic reticular nucleus and specific relay nucleus-thalamic reticular nucleus pathways in the Taylor model for seizure control as FFI and FBI, respectively. Subsequently, using the FBI as a crucial parameter, we constructed 2- and 3-compartment coupling models and evaluated their impact on seizure propagation in other chambers by varying the degree of coupling strength. Finally, we replicated the above study in a 10-compartment model to ensure the robustness of the findings. We confirmed that FBI is more effective by analyzing the combined effect of FFI and FBI, and the pathology state does advance as the coupling strength is increased. These findings elucidate the roles that these two pathways play in the propagation of epileptic seizures and may offer fresh perspectives on the clinical management of epilepsy.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":"35 18","pages":"1163-1172"},"PeriodicalIF":1.6,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuroreportPub Date : 2024-12-11Epub Date: 2024-11-06DOI: 10.1097/WNR.0000000000002108
Jian-Wen Fang, Hao Liu, Xin Huang
{"title":"Topological organization of the brain network in thyroid-associated ophthalmopathy using graph theoretical analysis.","authors":"Jian-Wen Fang, Hao Liu, Xin Huang","doi":"10.1097/WNR.0000000000002108","DOIUrl":"10.1097/WNR.0000000000002108","url":null,"abstract":"<p><p>Mounting neuroimaging evidence indicates that patients with thyroid-associated ophthalmopathy (TAO) demonstrate altered brain function and structure. Nonetheless, the alterations in the topological properties of the functional brain connectome in TAO patients are not yet fully understood. This study aimed to investigate the topological organization of the functional brain connectome in TAO patients using graph-theoretic methods. Twenty-five TAO patients (10 males and 15 females) and 25 age-, sex-, and education-matched healthy controls (HCs) (10 males and 15 females) (the TAO and HC data are from the same dataset in previous studies) underwent resting-state MRI scans. Graph-theoretic analysis was used to study the global, nodal, and edge topological properties of the brain's functional connectome. Both the TAO and HC groups exhibited high-efficiency small-world networks in their brain functional networks. However, there were no significant differences in small-world properties (Cp, γ, λ, Lp, and σ) and network efficiency [global and local efficiencies (Eloc)] between the two groups. In addition, the TAO group demonstrated reduced betweenness centrality in the right fusiform and increased nodal Eloc in the right intraparietal sulcus ( P < 0.05, Bonferroni-corrected). Furthermore, the TAO group displayed altered functional connections among the default-mode network (DMN), visual network (VN), sensorimotor network (SMN), and cingulo-opercular network (CON). Patients with TAO exhibited abnormal topological organization of the human brain connectome, including decreased betweenness centrality and increased nodal Eloc. Moreover, the TAO group displayed altered functional connections primarily within the DMN, VN, SMN, and CON. These findings provide crucial insights into the neural mechanisms underlying visual loss, abnormal emotion regulation, and cognitive deficits in TAO patients.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"1133-1142"},"PeriodicalIF":1.6,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuroreportPub Date : 2024-12-11Epub Date: 2024-10-24DOI: 10.1097/WNR.0000000000002112
Minxiao Zheng, Nian Xiang, Min Qiu, Hui Da, Qiang Xiao, Qiang Wei, Dongmei Zhu, Shanzhi Ke, Hui Shi, Yan Zhang, Lufang Su, Jiayi Zhong
{"title":"Different dorsolateral prefrontal activation during an emotionalautobiographical memory task between male and female depressed individuals: a fNIRS study.","authors":"Minxiao Zheng, Nian Xiang, Min Qiu, Hui Da, Qiang Xiao, Qiang Wei, Dongmei Zhu, Shanzhi Ke, Hui Shi, Yan Zhang, Lufang Su, Jiayi Zhong","doi":"10.1097/WNR.0000000000002112","DOIUrl":"10.1097/WNR.0000000000002112","url":null,"abstract":"<p><p>Depression in male and female are commonly associated with different prevalence, severity, and, in some cases, distinct syndromes or subtypes. However, only a small amount of research has been conducted to completely understand the underlying neuroanatomical mechanisms. The goal of the current study was to provide neural markers for specific depression therapies by demonstrating the differences in aberrant prefrontal activity between male and female depressed subjects during an emotional autobiographical memory test. The study included 127 young adults who were randomly assigned to one of two groups: male depression (62 participants) or female depression (65 participants). The average oxyhemoglobin levels in the dorsolateral prefrontal cortex throughout the emotional autobiographical memory task were assessed utilizing 53-channel functional near-infrared spectroscopy imaging equipment. The oxy-Hb activation in the left dorsolateral prefrontal cortex (lDLPFC) and right dorsolateral prefrontal cortex (rDLPFC) had no significant interaction between groups and emotional valences. A significant main effect was found between male and female, with female depression groups showing lower oxy-Hb activity in lDLPFC and rDLPFC than male depression groups. Male and female depression patients showed distinct brain activation in the DLPFC during an emotional autobiographical memory test, suggesting potential specific neurological indicators for varied somatic symptoms in male and female depression patients. These distinctions should be taken into account while creating preventive measures.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"1173-1182"},"PeriodicalIF":1.6,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reduced glutathione attenuates pediatric sepsis-associated encephalopathy by inhibiting inflammatory cytokine release and mitigating lipid peroxidation-induced brain injury.","authors":"Haosen Wang, Xinrui Chen, Dan Hu, Xin Xin, Zhongxiu Zhao, Zhen Jiang","doi":"10.1097/WNR.0000000000002109","DOIUrl":"10.1097/WNR.0000000000002109","url":null,"abstract":"<p><p>Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis. Reduced glutathione (GSH) has antioxidant properties and is used as a neuroprotective agent in some studies. However, research on the application of exogenous GSH in the treatment of SAE is limited. This study aimed to determine the effects of exogenous GSH in pediatric SAE patients and mice. We evaluated clinical parameters, inflammatory factors, and oxidative stress before and after GSH treatment. The clinical trials demonstrated that GSH treatment improved brain damage markers (S-100 beta protein, brain fatty acid-binding protein), increased neurological status scores (Glasgow coma scale), and reduced Pediatric Risk of Mortality III scores in children with SAE. GSH treatment also significantly reduced the levels of inflammatory factors (interleukin-6, tumor necrosis factor-α) and decreased lipid peroxidation (superoxide dismutase). Additionally, GSH reduced lipid peroxidation resulting from abnormal lipid metabolism, as indicated by the levels of acyl-CoA synthetase long-chain family member 4, lysophosphatidylcholine acyltransferase 3, and glutathione peroxidase 4. In-vivo experiments showed that the neuroprotective effect of GSH was dose-dependent, with better effects observed at medium and high doses. Furthermore, GSH alleviated brain damage, suppressed the release of inflammatory factors, and inhibited lipid peroxidation in SAE mice. The animal experiments also showed that GSH reduces lipid peroxidation through the 15-lipoxygenase/phosphatidylethanolamine binding protein 1/glutathione peroxidase 4 pathway. Our study suggests that exogenous GSH has neuroprotective effects in pediatric SAE. These findings provide a basis for the potential use of GSH as a therapeutic method for SAE.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"1143-1154"},"PeriodicalIF":1.6,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}