{"title":"Fate of localization features in a one-dimensional non-Hermitian flat-band lattice with quasiperiodic modulations","authors":"Hui Liu, Zhanpeng Lu, Xu Xia, Zhihao Xu","doi":"10.1088/1367-2630/ad7529","DOIUrl":"https://doi.org/10.1088/1367-2630/ad7529","url":null,"abstract":"We investigate the influence of quasiperiodic modulations on one-dimensional non-Hermitian diamond lattices with an artificial magnetic flux <italic toggle=\"yes\">θ</italic> that possess flat bands. Our study shows that the symmetry of these modulations and the magnetic flux <italic toggle=\"yes\">θ</italic> play a pivotal role in shaping the localization properties of the system. When <italic toggle=\"yes\">θ</italic> = 0, the non-Hermitian lattice exhibits a single flat band in the crystalline case, and symmetric as well as antisymmetric modulations can induce accurate mobility edges. In contrast, when <inline-formula>\u0000<tex-math><?CDATA $theta = pi$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>θ</mml:mi><mml:mo>=</mml:mo><mml:mi>π</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7529ieqn1.gif\"></inline-graphic></inline-formula>, the clean diamond lattice manifests three dispersionless bands referred to as an ‘all-band-flat’ (ABF) structure, irrespective of the non-Hermitian parameter. The ABF structure restricts the transition from delocalized to localized states, as all states remain localized for any finite symmetric modulation. Our numerical calculations further unveil that the ABF system subjected to antisymmetric modulations exhibits multifractal-to-localized edges. Multifractal states are predominantly concentrated in the internal region of the spectrum. Additionally, we explore the case where <italic toggle=\"yes\">θ</italic> lies within the range of <inline-formula>\u0000<tex-math><?CDATA $(0, pi)$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>π</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7529ieqn2.gif\"></inline-graphic></inline-formula>, revealing a diverse array of complex localization features. Finally, we propose a classical electrical circuit scheme to realize the non-Hermitian flat-band chain with quasiperiodic modulations.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"5 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan Zhou, Yue Sun, Ivan S Veshchunov, S Kittaka, X L Shen, H M Ma, W Wei, Y Q Pan, M Cheng, Y F Zhang, Y Kono, Yuping Sun, T Tamegai, Xuan Luo, Zhixiang Shi, Toshiro Sakakibara
{"title":"Multiple magnetic orders discovered in the superconducting state of EuFe2(As 1−x P x)2","authors":"Nan Zhou, Yue Sun, Ivan S Veshchunov, S Kittaka, X L Shen, H M Ma, W Wei, Y Q Pan, M Cheng, Y F Zhang, Y Kono, Yuping Sun, T Tamegai, Xuan Luo, Zhixiang Shi, Toshiro Sakakibara","doi":"10.1088/1367-2630/ad7494","DOIUrl":"https://doi.org/10.1088/1367-2630/ad7494","url":null,"abstract":"The interplay between superconductivity and magnetism is an important subject in condensed matter physics. EuFe<sub>2</sub>As<sub>2</sub>-based iron pnictides could offer an interesting plateau to study their relationship that has attracted considerable attention. So far, two magnetic phase transitions were observed in EuFe<sub>2</sub>As<sub>2</sub>-based crystal, which were deemed to originate from the itinerant Fe moments (~190 K) and the localized Eu<sup>2+</sup> moments (~19 K), respectively. Here, we systematically studied the heat capacity for the EuFe<sub>2</sub>(As<inline-formula>\u0000<tex-math><?CDATA $ _{1-x}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7494ieqn3.gif\"></inline-graphic></inline-formula>P<sub><italic toggle=\"yes\">x</italic></sub>)<sub>2</sub> crystals with <italic toggle=\"yes\">x</italic> = 0.21 (optimally doped) and <italic toggle=\"yes\">x</italic> = 0.29 (overdoped). We have found two new magnetic orders in the superconducting state (ranging from 0.4 to 1.2 K) in the optimally doped crystal. As more P was introduced into the As site, one of the magnetic orders becomes absent in the overdoped crystal. Additionally, we observed strong field and orientation dependence in heat capacity. The present findings in EuFe<sub>2</sub>(As<inline-formula>\u0000<tex-math><?CDATA $ _{1-x}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7494ieqn4.gif\"></inline-graphic></inline-formula>P<sub><italic toggle=\"yes\">x</italic></sub>)<sub>2</sub> have detected the new low-temperature magnetic orders, which may originate from the localized Eu<sup>2+</sup> spins order or the spin reorientation.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"33 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient approach for generating vortex sources with arbitrary orbital angular momentum in acoustic experiments","authors":"Zhanlei Hao, Songsong Li, Yadong Xu, Shan Zhu, Huanyang Chen","doi":"10.1088/1367-2630/ad73fc","DOIUrl":"https://doi.org/10.1088/1367-2630/ad73fc","url":null,"abstract":"In theoretical research framework of acoustics or optics, how to provide stable and efficient experimental vortex sources with arbitrary orbital angular momentum (OAM) (especially with larger OAM) is a highly challenging research topic. Here, we propose and demonstrate the general principle of two different methods to generate vortex sources with arbitrary OAM, based on the point-sources array and acoustic metamaterials, respectively. Specifically, the general synthetic law is summarized from the analytical perspective behind generating two-dimensional vortex waves using different point sources with different phases, and the design flexibility of acoustic metamaterials is also utilized to provide an ideal solution for generating vortex sources with larger OAM. Besides, we qualitatively and quantitatively determine the OAM of generated vortex waves through simple formulas, and briefly discuss the applicability and stability of two different methods with complementary advantages. The principles of vortex sources generation revealed in this work provide direct theoretical support for the experimental exploration of interactions between multiphysics fields and complex media, with potential applications in vortex fields manipulation and OAM detection.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"59 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Higher-order interactions and zero-determinant strategies in the public goods game","authors":"Junchi Li","doi":"10.1088/1367-2630/ad7491","DOIUrl":"https://doi.org/10.1088/1367-2630/ad7491","url":null,"abstract":"Since the ingenious discovery of zero-determinant (ZD) strategies by Press and Dyson, many efforts have been devoted to the evolutionary performance of ZD strategies. Recently, the effects of higher-order interactions on evolutionary games have attracted widespread interests, whereas it remains unknown how higher-order interactions affect the evolutionary performance of ZD strategies. This paper focuses on the role of higher-order interactions on evolutionary ZD strategies in iterated public goods game, where the baseline payoff is a key parameter to describe nodes’ extent of reciprocity in both first-order and second-order interactions. Through the adaptive-like dynamics, we found that there is a critical value of each network, above which the networked game will converge to a consensus state where all the nodes obtain the same payoff. This critical value is significantly affected by the relative strength of higher-order interactions with a U-shaped trend. Numerical simulations are carried out to explore how the network structures affect the dynamics. The results in networks with different sizes indicate that networks with higher average degree are more easily to converge to the consensus state. The simulations on a real-world network further support the theoretical conclusions.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"20 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Zhang, Haowei Chen, Qiyu Chen, Jie Ding, Xiang Li
{"title":"GCRL: a graph neural network framework for network connectivity robustness learning","authors":"Yu Zhang, Haowei Chen, Qiyu Chen, Jie Ding, Xiang Li","doi":"10.1088/1367-2630/ad6ead","DOIUrl":"https://doi.org/10.1088/1367-2630/ad6ead","url":null,"abstract":"The resilience and adaptability of complex networks is crucial in ensuring their functionality against disruptions. Particularly, maintaining network connectivity under various attack scenarios is a key aspect of such resilience. Network connectivity refers to the degree to which nodes within a network are interconnected and able to exchange information or resources. Its robustness reflects the ability of a network to maintain connectivity under various attacks. Such ability has profound physical significance, ensuring the stability and reliability of real-world systems. Currently, connectivity robustness assessments rely heavily on very time-consuming attack simulations. This paper introduces a graph neural network framework for network connectivity robustness learning (GCRL) to advance the study of network connectivity robustness. GCRL transforms initial degree distributions and network topology into informative embedding vectors, which are then processed by a robustness learning module mainly composed of multi-layer perceptron, achieving both high speed and precision. Our extensive experiments demonstrate the superior performance of GCRL obtained in less time compared to existing methods, especially in tough scenarios where test data distributions significantly differ from the training set. The framework also shows adaptability to networks of different sizes, making it a more generalized solution for complex network robustness learning.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"2 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatial mode conversion of a reflected polarized beam from an isotropic medium at brewster angle","authors":"Hua-Jie Hu, He-He Li, Xin-Zhong Li","doi":"10.1088/1367-2630/ad50fe","DOIUrl":"https://doi.org/10.1088/1367-2630/ad50fe","url":null,"abstract":"In this study, the spatial mode evolution of a chiral polarized beam during reflection on an isotropic medium surface at Brewster angle is both theoretically and experimentally investigated. In this process, the topological charge of the reflection field’s horizontal component increases (decreases) by one, relative to the specific left (right) elliptical polarization incident beam. While incident <italic toggle=\"yes\">l</italic><sub><italic toggle=\"yes\">i</italic></sub>-order vortex beam is in a certain polarization state, the intensity distribution of the reflection field’s horizontal component appears as the interference pattern of the <inline-formula>\u0000<tex-math><?CDATA $l_{i}pm 1$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>l</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mo>±</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad50feieqn1.gif\"></inline-graphic></inline-formula>-order output vortex beams. The conversion occurs between the spin and orbital angular momentum and does not violate the conservation of the total angular momentum. We explain the physical mechanism of this phenomenon using phase shift theorem, and analyze the effect of ellipticity and polarization angle on this physical phenomenon.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"6 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tighter upper bounds on the critical temperature of two-dimensional superfluids and superconductors from the BCS to the Bose regime","authors":"Tingting Shi, Wei Zhang, C A R Sá de Melo","doi":"10.1088/1367-2630/ad7281","DOIUrl":"https://doi.org/10.1088/1367-2630/ad7281","url":null,"abstract":"We discuss standard and tighter upper bounds on the critical temperature <inline-formula>\u0000<tex-math><?CDATA $T_textrm{c}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn1.gif\"></inline-graphic></inline-formula> of two-dimensional superfluids and superconductors versus particle density <italic toggle=\"yes\">n</italic> or filling factor <italic toggle=\"yes\">ν</italic> for continuum and lattice systems from the Bardeen–Cooper–Schrieffer (BCS) to the Bose regime. We consider only one-band Hamiltonians, where the transition from the normal to the superfluid (superconducting) phase is governed by the Berezinskii–Kosterlitz–Thouless (BKT) mechanism of vortex-antivortex binding, such that a direct relation between the superfluid density tensor and <inline-formula>\u0000<tex-math><?CDATA $T_textrm{c}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn2.gif\"></inline-graphic></inline-formula> exists. The standard critical temperature upper bound <inline-formula>\u0000<tex-math><?CDATA $T_textrm{c}^{mathrm{up1}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mrow><mml:mi>up</mml:mi><mml:mn>1</mml:mn></mml:mrow></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn3.gif\"></inline-graphic></inline-formula> is obtained from the Ferrell-Glover-Tinkham sum rule for the optical conductivity, which constrains the superfluid density tensor components. We demonstrate that it is imperative to consider at least the full effect of phase fluctuations of the order parameter for superfluidity (superconductivity) and use the renormalization group to obtain the phase-fluctuation critical temperature <inline-formula>\u0000<tex-math><?CDATA $T_textrm{c}^{,theta}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn4.gif\"></inline-graphic></inline-formula>, a much tighter bound to the critical temperature supremum than <inline-formula>\u0000<tex-math><?CDATA $T_textrm{c}^{mathrm{up1}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mrow><mml:mi>up</mml:mi><mml:mn>1</mml:mn></mml:mrow></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn5.gif\"></inline-graphic></inline-formula> over a wide range of densities or filling factors. We also discuss a fundamental difference between superfluids and superconductors in regards to the vortex core energy dependence on density. Going beyond phase fluctuations, we note that theories including ","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"41 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sven Erik Ilse, René Nacke, Gisela Schütz, Eberhard Goering
{"title":"Disentangling different interfacial effects of reduced thin layer magnetizations","authors":"Sven Erik Ilse, René Nacke, Gisela Schütz, Eberhard Goering","doi":"10.1088/1367-2630/ad69b7","DOIUrl":"https://doi.org/10.1088/1367-2630/ad69b7","url":null,"abstract":"Thin buried magnetic layers ranging from thicknesses of a few atomic monolayers to several nanometers are omnipresent in the fields of magnetism and spintronics. For the functionality and fine tuning of devices build with such layers, exact knowledge of the depth dependent magnetic properties is essential. Especially the interfacial magnetic properties are important. Hence, understanding how magnetism is affected by structural variations, such as thickness or interface roughness, is mandatory. In this study, we use x-ray resonant magnetic reflectometry and magnetometry to study the high-resolution depth dependent magnetization profiles of thin magnetic transition metal layers sandwiched between an oxide and chromium layer. Compared to bulk materials, the room temperature saturation magnetization of these layers is reduced by up to 67%. These reductions are extremely sensitive to small structural variations. From the magnetic depth profiles, we disentangle different effects contributing to the magnetization reduction and the exact magnetic properties of the interface.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"8 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct laser acceleration in varying plasma density profiles","authors":"R Babjak, B Martinez, M Krus, M Vranic","doi":"10.1088/1367-2630/ad7280","DOIUrl":"https://doi.org/10.1088/1367-2630/ad7280","url":null,"abstract":"Direct laser acceleration has proven to be an efficient source of high-charge electron bunches and high brilliance x-rays. However, an analytical description of the acceleration in the interaction with varying plasma density targets is still missing. Here, we provide an analytical estimate of the maximum energies that electrons can achieve in such a case. We demonstrate that the maximum energy depends on the local electron properties at the moment when the electron fulfills the resonant condition at the beginning of the acceleration. This knowledge enables density shaping for various purposes. One application is to decrease the required acceleration distance needed to achieve the maximum electron energy. Another use for density tailoring is to achieve acceleration beyond the radiation reaction limit. We derive the energy scaling law that is valid for arbitrary density profile that varies slowly compared with the betatron period. Our results can be applied to electron heating in exponential preplasma of thin foils, ablating plasma plumes, or gas jets with long-scale ramp-up.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"16 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucas E A Porto, Gabriel Ruffolo, Rafael Rabelo, Marcelo Terra Cunha, Paweł Kurzyński
{"title":"Trade-off relations between Bell nonlocality and local Kochen–Specker contextuality in generalized Bell scenarios","authors":"Lucas E A Porto, Gabriel Ruffolo, Rafael Rabelo, Marcelo Terra Cunha, Paweł Kurzyński","doi":"10.1088/1367-2630/ad7167","DOIUrl":"https://doi.org/10.1088/1367-2630/ad7167","url":null,"abstract":"The relations between Bell nonlocality and Kochen–Specker contextuality have been subject of research from many different perspectives in the last decades. Recently, some interesting results on these relations have been explored in the so-called generalized Bell scenarios, that is, scenarios where Bell spatial separation (or agency independence) coexist with (at least one of the) parties’ ability to perform compatible measurements at each round of the experiment. When this party has an <italic toggle=\"yes\">n</italic>-cycle compatiblity setup, it was first claimed that Bell nonlocality could not be concomitantly observed with contextuality at this party’s local experiment. However, by a more natural reading of the definition of locality, it turns out that both Bell nonlocality and local contextuality can, in fact, be jointly present. In spite of it, in this work we prove that in the simplest of those scenarios there cannot be arbitrary amounts of both of these two resources together. That is, in these cases we show that the violation of any Bell inequality limits the possible violations of any local noncontextuality inequality. We also explore this trade-off relation using quantifiers of nonlocality and contextuality, discussing how such a relation can be understood in terms of a ‘global’ notion of contextuality, and we study possible extensions of this result to other scenarios.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"72 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}