{"title":"从 BCS 到玻色体系中二维超流体和超导体临界温度的更严格上限","authors":"Tingting Shi, Wei Zhang, C A R Sá de Melo","doi":"10.1088/1367-2630/ad7281","DOIUrl":null,"url":null,"abstract":"We discuss standard and tighter upper bounds on the critical temperature <inline-formula>\n<tex-math><?CDATA $T_\\textrm{c}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn1.gif\"></inline-graphic></inline-formula> of two-dimensional superfluids and superconductors versus particle density <italic toggle=\"yes\">n</italic> or filling factor <italic toggle=\"yes\">ν</italic> for continuum and lattice systems from the Bardeen–Cooper–Schrieffer (BCS) to the Bose regime. We consider only one-band Hamiltonians, where the transition from the normal to the superfluid (superconducting) phase is governed by the Berezinskii–Kosterlitz–Thouless (BKT) mechanism of vortex-antivortex binding, such that a direct relation between the superfluid density tensor and <inline-formula>\n<tex-math><?CDATA $T_\\textrm{c}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn2.gif\"></inline-graphic></inline-formula> exists. The standard critical temperature upper bound <inline-formula>\n<tex-math><?CDATA $T_\\textrm{c}^{\\mathrm{up1}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mrow><mml:mi>up</mml:mi><mml:mn>1</mml:mn></mml:mrow></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn3.gif\"></inline-graphic></inline-formula> is obtained from the Ferrell-Glover-Tinkham sum rule for the optical conductivity, which constrains the superfluid density tensor components. We demonstrate that it is imperative to consider at least the full effect of phase fluctuations of the order parameter for superfluidity (superconductivity) and use the renormalization group to obtain the phase-fluctuation critical temperature <inline-formula>\n<tex-math><?CDATA $T_\\textrm{c}^{\\,\\theta}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn4.gif\"></inline-graphic></inline-formula>, a much tighter bound to the critical temperature supremum than <inline-formula>\n<tex-math><?CDATA $T_\\textrm{c}^{\\mathrm{up1}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mrow><mml:mi>up</mml:mi><mml:mn>1</mml:mn></mml:mrow></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn5.gif\"></inline-graphic></inline-formula> over a wide range of densities or filling factors. We also discuss a fundamental difference between superfluids and superconductors in regards to the vortex core energy dependence on density. Going beyond phase fluctuations, we note that theories including modulus fluctuations of the order parameter or particle-hole fluctuations valid throughout the BCS-Bose evolution are still lacking, but the inclusion of these fluctuations can only produce a critical temperature that is lower than <inline-formula>\n<tex-math><?CDATA $T_\\textrm{c}^{\\,\\theta}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn6.gif\"></inline-graphic></inline-formula> and thus produce an even tighter bound to the critical temperature supremum. We conclude by indicating that if the measured critical temperature exceeds <inline-formula>\n<tex-math><?CDATA $T_\\textrm{c}^{\\,\\theta}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn7.gif\"></inline-graphic></inline-formula> in experiments involving two-dimensional single-band systems, then a non-BKT mechanism must be invoked to describe the superfluid (superconducting) transition.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"41 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tighter upper bounds on the critical temperature of two-dimensional superfluids and superconductors from the BCS to the Bose regime\",\"authors\":\"Tingting Shi, Wei Zhang, C A R Sá de Melo\",\"doi\":\"10.1088/1367-2630/ad7281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss standard and tighter upper bounds on the critical temperature <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{c}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"njpad7281ieqn1.gif\\\"></inline-graphic></inline-formula> of two-dimensional superfluids and superconductors versus particle density <italic toggle=\\\"yes\\\">n</italic> or filling factor <italic toggle=\\\"yes\\\">ν</italic> for continuum and lattice systems from the Bardeen–Cooper–Schrieffer (BCS) to the Bose regime. We consider only one-band Hamiltonians, where the transition from the normal to the superfluid (superconducting) phase is governed by the Berezinskii–Kosterlitz–Thouless (BKT) mechanism of vortex-antivortex binding, such that a direct relation between the superfluid density tensor and <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{c}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"njpad7281ieqn2.gif\\\"></inline-graphic></inline-formula> exists. The standard critical temperature upper bound <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{c}^{\\\\mathrm{up1}}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mrow><mml:mi>up</mml:mi><mml:mn>1</mml:mn></mml:mrow></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"njpad7281ieqn3.gif\\\"></inline-graphic></inline-formula> is obtained from the Ferrell-Glover-Tinkham sum rule for the optical conductivity, which constrains the superfluid density tensor components. We demonstrate that it is imperative to consider at least the full effect of phase fluctuations of the order parameter for superfluidity (superconductivity) and use the renormalization group to obtain the phase-fluctuation critical temperature <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{c}^{\\\\,\\\\theta}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mstyle scriptlevel=\\\"0\\\"></mml:mstyle><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"njpad7281ieqn4.gif\\\"></inline-graphic></inline-formula>, a much tighter bound to the critical temperature supremum than <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{c}^{\\\\mathrm{up1}}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mrow><mml:mi>up</mml:mi><mml:mn>1</mml:mn></mml:mrow></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"njpad7281ieqn5.gif\\\"></inline-graphic></inline-formula> over a wide range of densities or filling factors. We also discuss a fundamental difference between superfluids and superconductors in regards to the vortex core energy dependence on density. Going beyond phase fluctuations, we note that theories including modulus fluctuations of the order parameter or particle-hole fluctuations valid throughout the BCS-Bose evolution are still lacking, but the inclusion of these fluctuations can only produce a critical temperature that is lower than <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{c}^{\\\\,\\\\theta}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mstyle scriptlevel=\\\"0\\\"></mml:mstyle><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"njpad7281ieqn6.gif\\\"></inline-graphic></inline-formula> and thus produce an even tighter bound to the critical temperature supremum. We conclude by indicating that if the measured critical temperature exceeds <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{c}^{\\\\,\\\\theta}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mstyle scriptlevel=\\\"0\\\"></mml:mstyle><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"njpad7281ieqn7.gif\\\"></inline-graphic></inline-formula> in experiments involving two-dimensional single-band systems, then a non-BKT mechanism must be invoked to describe the superfluid (superconducting) transition.\",\"PeriodicalId\":19181,\"journal\":{\"name\":\"New Journal of Physics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1367-2630/ad7281\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad7281","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Tighter upper bounds on the critical temperature of two-dimensional superfluids and superconductors from the BCS to the Bose regime
We discuss standard and tighter upper bounds on the critical temperature Tc of two-dimensional superfluids and superconductors versus particle density n or filling factor ν for continuum and lattice systems from the Bardeen–Cooper–Schrieffer (BCS) to the Bose regime. We consider only one-band Hamiltonians, where the transition from the normal to the superfluid (superconducting) phase is governed by the Berezinskii–Kosterlitz–Thouless (BKT) mechanism of vortex-antivortex binding, such that a direct relation between the superfluid density tensor and Tc exists. The standard critical temperature upper bound Tcup1 is obtained from the Ferrell-Glover-Tinkham sum rule for the optical conductivity, which constrains the superfluid density tensor components. We demonstrate that it is imperative to consider at least the full effect of phase fluctuations of the order parameter for superfluidity (superconductivity) and use the renormalization group to obtain the phase-fluctuation critical temperature Tcθ, a much tighter bound to the critical temperature supremum than Tcup1 over a wide range of densities or filling factors. We also discuss a fundamental difference between superfluids and superconductors in regards to the vortex core energy dependence on density. Going beyond phase fluctuations, we note that theories including modulus fluctuations of the order parameter or particle-hole fluctuations valid throughout the BCS-Bose evolution are still lacking, but the inclusion of these fluctuations can only produce a critical temperature that is lower than Tcθ and thus produce an even tighter bound to the critical temperature supremum. We conclude by indicating that if the measured critical temperature exceeds Tcθ in experiments involving two-dimensional single-band systems, then a non-BKT mechanism must be invoked to describe the superfluid (superconducting) transition.
期刊介绍:
New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.