从 BCS 到玻色体系中二维超流体和超导体临界温度的更严格上限

IF 2.8 2区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Tingting Shi, Wei Zhang, C A R Sá de Melo
{"title":"从 BCS 到玻色体系中二维超流体和超导体临界温度的更严格上限","authors":"Tingting Shi, Wei Zhang, C A R Sá de Melo","doi":"10.1088/1367-2630/ad7281","DOIUrl":null,"url":null,"abstract":"We discuss standard and tighter upper bounds on the critical temperature <inline-formula>\n<tex-math><?CDATA $T_\\textrm{c}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn1.gif\"></inline-graphic></inline-formula> of two-dimensional superfluids and superconductors versus particle density <italic toggle=\"yes\">n</italic> or filling factor <italic toggle=\"yes\">ν</italic> for continuum and lattice systems from the Bardeen–Cooper–Schrieffer (BCS) to the Bose regime. We consider only one-band Hamiltonians, where the transition from the normal to the superfluid (superconducting) phase is governed by the Berezinskii–Kosterlitz–Thouless (BKT) mechanism of vortex-antivortex binding, such that a direct relation between the superfluid density tensor and <inline-formula>\n<tex-math><?CDATA $T_\\textrm{c}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn2.gif\"></inline-graphic></inline-formula> exists. The standard critical temperature upper bound <inline-formula>\n<tex-math><?CDATA $T_\\textrm{c}^{\\mathrm{up1}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mrow><mml:mi>up</mml:mi><mml:mn>1</mml:mn></mml:mrow></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn3.gif\"></inline-graphic></inline-formula> is obtained from the Ferrell-Glover-Tinkham sum rule for the optical conductivity, which constrains the superfluid density tensor components. We demonstrate that it is imperative to consider at least the full effect of phase fluctuations of the order parameter for superfluidity (superconductivity) and use the renormalization group to obtain the phase-fluctuation critical temperature <inline-formula>\n<tex-math><?CDATA $T_\\textrm{c}^{\\,\\theta}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn4.gif\"></inline-graphic></inline-formula>, a much tighter bound to the critical temperature supremum than <inline-formula>\n<tex-math><?CDATA $T_\\textrm{c}^{\\mathrm{up1}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mrow><mml:mi>up</mml:mi><mml:mn>1</mml:mn></mml:mrow></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn5.gif\"></inline-graphic></inline-formula> over a wide range of densities or filling factors. We also discuss a fundamental difference between superfluids and superconductors in regards to the vortex core energy dependence on density. Going beyond phase fluctuations, we note that theories including modulus fluctuations of the order parameter or particle-hole fluctuations valid throughout the BCS-Bose evolution are still lacking, but the inclusion of these fluctuations can only produce a critical temperature that is lower than <inline-formula>\n<tex-math><?CDATA $T_\\textrm{c}^{\\,\\theta}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn6.gif\"></inline-graphic></inline-formula> and thus produce an even tighter bound to the critical temperature supremum. We conclude by indicating that if the measured critical temperature exceeds <inline-formula>\n<tex-math><?CDATA $T_\\textrm{c}^{\\,\\theta}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad7281ieqn7.gif\"></inline-graphic></inline-formula> in experiments involving two-dimensional single-band systems, then a non-BKT mechanism must be invoked to describe the superfluid (superconducting) transition.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"41 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tighter upper bounds on the critical temperature of two-dimensional superfluids and superconductors from the BCS to the Bose regime\",\"authors\":\"Tingting Shi, Wei Zhang, C A R Sá de Melo\",\"doi\":\"10.1088/1367-2630/ad7281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss standard and tighter upper bounds on the critical temperature <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{c}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"njpad7281ieqn1.gif\\\"></inline-graphic></inline-formula> of two-dimensional superfluids and superconductors versus particle density <italic toggle=\\\"yes\\\">n</italic> or filling factor <italic toggle=\\\"yes\\\">ν</italic> for continuum and lattice systems from the Bardeen–Cooper–Schrieffer (BCS) to the Bose regime. We consider only one-band Hamiltonians, where the transition from the normal to the superfluid (superconducting) phase is governed by the Berezinskii–Kosterlitz–Thouless (BKT) mechanism of vortex-antivortex binding, such that a direct relation between the superfluid density tensor and <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{c}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"njpad7281ieqn2.gif\\\"></inline-graphic></inline-formula> exists. The standard critical temperature upper bound <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{c}^{\\\\mathrm{up1}}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mrow><mml:mi>up</mml:mi><mml:mn>1</mml:mn></mml:mrow></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"njpad7281ieqn3.gif\\\"></inline-graphic></inline-formula> is obtained from the Ferrell-Glover-Tinkham sum rule for the optical conductivity, which constrains the superfluid density tensor components. We demonstrate that it is imperative to consider at least the full effect of phase fluctuations of the order parameter for superfluidity (superconductivity) and use the renormalization group to obtain the phase-fluctuation critical temperature <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{c}^{\\\\,\\\\theta}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mstyle scriptlevel=\\\"0\\\"></mml:mstyle><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"njpad7281ieqn4.gif\\\"></inline-graphic></inline-formula>, a much tighter bound to the critical temperature supremum than <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{c}^{\\\\mathrm{up1}}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mrow><mml:mi>up</mml:mi><mml:mn>1</mml:mn></mml:mrow></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"njpad7281ieqn5.gif\\\"></inline-graphic></inline-formula> over a wide range of densities or filling factors. We also discuss a fundamental difference between superfluids and superconductors in regards to the vortex core energy dependence on density. Going beyond phase fluctuations, we note that theories including modulus fluctuations of the order parameter or particle-hole fluctuations valid throughout the BCS-Bose evolution are still lacking, but the inclusion of these fluctuations can only produce a critical temperature that is lower than <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{c}^{\\\\,\\\\theta}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mstyle scriptlevel=\\\"0\\\"></mml:mstyle><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"njpad7281ieqn6.gif\\\"></inline-graphic></inline-formula> and thus produce an even tighter bound to the critical temperature supremum. We conclude by indicating that if the measured critical temperature exceeds <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{c}^{\\\\,\\\\theta}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msubsup><mml:mi>T</mml:mi><mml:mtext>c</mml:mtext><mml:mrow><mml:mstyle scriptlevel=\\\"0\\\"></mml:mstyle><mml:mi>θ</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"njpad7281ieqn7.gif\\\"></inline-graphic></inline-formula> in experiments involving two-dimensional single-band systems, then a non-BKT mechanism must be invoked to describe the superfluid (superconducting) transition.\",\"PeriodicalId\":19181,\"journal\":{\"name\":\"New Journal of Physics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1367-2630/ad7281\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad7281","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了二维超流体和超导体的临界温度Tc与粒子密度n或填充因子ν的标准和更严格的上界,这些临界温度是针对从巴丁-库珀-施里弗(BCS)到玻色体系的连续体和晶格系统的。我们只考虑单带哈密顿,其中从正常阶段到超流体(超导)阶段的转变是由涡旋-反涡旋结合的别列津斯基-科斯特利兹-无涡(BKT)机制所支配的,因此超流体密度张量和 Tc 之间存在直接关系。标准临界温度上限 Tcup1 是由光导率的费雷尔-格洛弗-丁卡姆和规则得到的,它约束了超流体密度张量的成分。我们证明,必须至少考虑超流(超导)阶次参数相波动的全部影响,并使用重正化群来获得相波动临界温度 Tcθ,这是在广泛密度或填充因子范围内比 Tcup1 更严格的临界温度上界。我们还讨论了超流体和超导体在涡旋核心能量与密度的关系方面的根本区别。除了相波动之外,我们还注意到在整个BCS-Bose演化过程中仍然缺乏包含阶参数模量波动或粒子-空穴波动的理论,但是包含这些波动只能产生比Tcθ更低的临界温度,从而对临界温度上限值产生更严格的约束。我们最后指出,如果在涉及二维单带系统的实验中测得的临界温度超过了 Tcθ,那么就必须引用非 BKT 机制来描述超流(超导)转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tighter upper bounds on the critical temperature of two-dimensional superfluids and superconductors from the BCS to the Bose regime
We discuss standard and tighter upper bounds on the critical temperature Tc of two-dimensional superfluids and superconductors versus particle density n or filling factor ν for continuum and lattice systems from the Bardeen–Cooper–Schrieffer (BCS) to the Bose regime. We consider only one-band Hamiltonians, where the transition from the normal to the superfluid (superconducting) phase is governed by the Berezinskii–Kosterlitz–Thouless (BKT) mechanism of vortex-antivortex binding, such that a direct relation between the superfluid density tensor and Tc exists. The standard critical temperature upper bound Tcup1 is obtained from the Ferrell-Glover-Tinkham sum rule for the optical conductivity, which constrains the superfluid density tensor components. We demonstrate that it is imperative to consider at least the full effect of phase fluctuations of the order parameter for superfluidity (superconductivity) and use the renormalization group to obtain the phase-fluctuation critical temperature Tcθ, a much tighter bound to the critical temperature supremum than Tcup1 over a wide range of densities or filling factors. We also discuss a fundamental difference between superfluids and superconductors in regards to the vortex core energy dependence on density. Going beyond phase fluctuations, we note that theories including modulus fluctuations of the order parameter or particle-hole fluctuations valid throughout the BCS-Bose evolution are still lacking, but the inclusion of these fluctuations can only produce a critical temperature that is lower than Tcθ and thus produce an even tighter bound to the critical temperature supremum. We conclude by indicating that if the measured critical temperature exceeds Tcθ in experiments involving two-dimensional single-band systems, then a non-BKT mechanism must be invoked to describe the superfluid (superconducting) transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Physics
New Journal of Physics 物理-物理:综合
CiteScore
6.20
自引率
3.00%
发文量
504
审稿时长
3.1 months
期刊介绍: New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信