Spatial mode conversion of a reflected polarized beam from an isotropic medium at brewster angle

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hua-Jie Hu, He-He Li, Xin-Zhong Li
{"title":"Spatial mode conversion of a reflected polarized beam from an isotropic medium at brewster angle","authors":"Hua-Jie Hu, He-He Li, Xin-Zhong Li","doi":"10.1088/1367-2630/ad50fe","DOIUrl":null,"url":null,"abstract":"In this study, the spatial mode evolution of a chiral polarized beam during reflection on an isotropic medium surface at Brewster angle is both theoretically and experimentally investigated. In this process, the topological charge of the reflection field’s horizontal component increases (decreases) by one, relative to the specific left (right) elliptical polarization incident beam. While incident <italic toggle=\"yes\">l</italic><sub><italic toggle=\"yes\">i</italic></sub>-order vortex beam is in a certain polarization state, the intensity distribution of the reflection field’s horizontal component appears as the interference pattern of the <inline-formula>\n<tex-math><?CDATA $l_{i}\\pm 1$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>l</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mo>±</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"njpad50feieqn1.gif\"></inline-graphic></inline-formula>-order output vortex beams. The conversion occurs between the spin and orbital angular momentum and does not violate the conservation of the total angular momentum. We explain the physical mechanism of this phenomenon using phase shift theorem, and analyze the effect of ellipticity and polarization angle on this physical phenomenon.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad50fe","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the spatial mode evolution of a chiral polarized beam during reflection on an isotropic medium surface at Brewster angle is both theoretically and experimentally investigated. In this process, the topological charge of the reflection field’s horizontal component increases (decreases) by one, relative to the specific left (right) elliptical polarization incident beam. While incident li-order vortex beam is in a certain polarization state, the intensity distribution of the reflection field’s horizontal component appears as the interference pattern of the li±1-order output vortex beams. The conversion occurs between the spin and orbital angular momentum and does not violate the conservation of the total angular momentum. We explain the physical mechanism of this phenomenon using phase shift theorem, and analyze the effect of ellipticity and polarization angle on this physical phenomenon.
各向同性介质在布鲁斯特角反射偏振光束的空间模式转换
本研究从理论和实验两方面研究了手性偏振光束在布鲁斯特角各向同性介质表面反射过程中的空间模式演变。在此过程中,相对于特定的左(右)椭圆偏振入射光束,反射场水平分量的拓扑电荷增加(减少)1。当入射的里阶涡旋光束处于某种偏振态时,反射场水平分量的强度分布会呈现出里±1阶输出涡旋光束的干涉图案。这种转换发生在自旋角动量和轨道角动量之间,并不违反总角动量守恒。我们用相移定理解释了这一现象的物理机制,并分析了椭圆度和偏振角对这一物理现象的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信