Neuropharmacology最新文献

筛选
英文 中文
Binge ethanol consumption can be attenuated by systemic administration of minocycline and is associated with enhanced neuroinflammation in the central amygdala 全身服用米诺环素可减轻狂饮乙醇的情况,而狂饮乙醇与杏仁核中枢神经炎症的增强有关。
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-10-05 DOI: 10.1016/j.neuropharm.2024.110174
Sean Schrank , Joshua P. Sevigny , N. Ika Yunus , Katherine R. Vetter , Oscar D. Aguilar , Vivek Ily , Mikaela Valchinova , Alexandra T. Keinath , Dennis R. Sparta
{"title":"Binge ethanol consumption can be attenuated by systemic administration of minocycline and is associated with enhanced neuroinflammation in the central amygdala","authors":"Sean Schrank ,&nbsp;Joshua P. Sevigny ,&nbsp;N. Ika Yunus ,&nbsp;Katherine R. Vetter ,&nbsp;Oscar D. Aguilar ,&nbsp;Vivek Ily ,&nbsp;Mikaela Valchinova ,&nbsp;Alexandra T. Keinath ,&nbsp;Dennis R. Sparta","doi":"10.1016/j.neuropharm.2024.110174","DOIUrl":"10.1016/j.neuropharm.2024.110174","url":null,"abstract":"<div><div>Alcohol use disorder (AUD) has a complicated pathophysiology. Binge ethanol intoxication may produce long-lasting changes throughout extended amygdala neurocircuitry including neuroinflammation, often leading to relapse. Therefore, understanding the role of binge drinking induced neuroinflammation on extended amygdala neurocircuitry is critically important for treatment. We sought to understand the role of neuroinflammation in a naturalized form of rodent binge ethanol drinking (Drinking in the Dark (DID)). In a 5-week DID paradigm, we demonstrate that acute intraperitoneal (IP) injection of the anti-inflammatory drug minocycline significantly reduced binge drinking repeatedly in male and female Cx3CR1-GFP and C57BL/6J mice. Importantly, IP administration transiently decreased intermittent access sucrose consumption, was not observed on the second IP injection, but did not significantly alter food or water consumption, suggesting that minocycline may produce initial acute aversive effects and may not alter long-term consumption of natural rewards. Examination of rodent behaviors post ethanol binge drinking reveals no lasting effects of minocycline treatment on locomotion or anxiety-like behavior. To assess neuroinflammation, we developed a novel analysis method using a Matlab image analysis script, which allows for non-biased skeletonization and evaluation of microglia morphology to determine a possible activation state in Cx3CR1-GFP knock-in mice after repeated DID. We observed significant morphological changes of microglia within the CeA, but no differences in the BLA. Taken together, this study demonstrates repeated binge ethanol consumption can produce significant levels of microglia morphology changes within the CeA, and that immunomodulatory therapies may be an intriguing pharmacological candidate for the treatment of AUD.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"262 ","pages":"Article 110174"},"PeriodicalIF":4.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abnormal increased mTOR signaling regulates seizure threshold in Dravet syndrome 异常增加的 mTOR 信号调节着德雷韦综合征的癫痫阈值。
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-10-05 DOI: 10.1016/j.neuropharm.2024.110166
Che-Wen Tsai , Shih-Yin Ho , I Chun Chen , Kai-Chieh Chang , Hou-Jen Chen , Feng-Chiao Tsai , Horng-Huei Liou
{"title":"Abnormal increased mTOR signaling regulates seizure threshold in Dravet syndrome","authors":"Che-Wen Tsai ,&nbsp;Shih-Yin Ho ,&nbsp;I Chun Chen ,&nbsp;Kai-Chieh Chang ,&nbsp;Hou-Jen Chen ,&nbsp;Feng-Chiao Tsai ,&nbsp;Horng-Huei Liou","doi":"10.1016/j.neuropharm.2024.110166","DOIUrl":"10.1016/j.neuropharm.2024.110166","url":null,"abstract":"<div><div>Excessive activation of mTOR has been observed in the brains of mouse models for Dravet syndrome. We aim to confirm whether that the overactivation of mTOR contributes to the neuropathological changes leading to epileptogenesis and neurobehavior deficits to support a novel pharmacological therapeutic approach for Dravet syndrome. The mTOR inhibitor everolimus, as a clinical antiseizure medication, was utilized to investigate whether mTOR is involved in hyperthermia-induced seizures, anxiety-like, and autism-like behaviors, as well as to explore potential pathogenic mechanisms in <em>Scn1a</em><sup><em>E1099X/+</em></sup> mice, a model of Dravet syndrome. First, we found that mTOR signaling was upregulated in hippocampus tissues and neural cultures derived from <em>Scn1a</em><sup><em>E1099X/+</em></sup> mice prior to seizure onset. Behaviorally, everolimus increased the seizure threshold and improved anxiety-like and autism-like behaviors in <em>Scn1a</em><sup><em>E1099X/+</em></sup> mice. Electrophysiologically, everolimus reduced the frequency of spontaneous excitatory postsynaptic currents in dentate granule neurons from <em>Scn1a</em><sup><em>E1099X/+</em></sup> mice. Biochemically, everolimus prevented hyperthermia-induced phosphorylation of hippocampal S6 ribosome in hippocampus, and it delayed hyperthermia-induced increase of cytosolic Ca<sup>2+</sup> level in primary neuronal cultures derived from <em>Scn1a</em><sup><em>E1099X/+</em></sup> mice. Our results provide the evidence that overactivated mTOR as an important neuropathological change which regulates seizure threshold, impairments of neurobehavior, neuronal glutamatergic transmission and intracellular Ca<sup>2+</sup> levels in <em>Scn1a</em><sup><em>E1099X/+</em></sup> mice. Inhibition of mTOR is a potential pharmacological therapeutic approach.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"262 ","pages":"Article 110166"},"PeriodicalIF":4.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PET imaging identifies anti-inflammatory effects of fluoxetine and a correlation of glucose metabolism during epileptogenesis with chronic seizure frequency PET 成像确定了氟西汀的抗炎作用以及癫痫发生过程中葡萄糖代谢与慢性癫痫发作频率的相关性。
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-10-05 DOI: 10.1016/j.neuropharm.2024.110178
Marion Bankstahl , Ina Jahreis , Bettina J. Wolf , Tobias L. Ross , Jens P. Bankstahl , Pablo Bascuñana
{"title":"PET imaging identifies anti-inflammatory effects of fluoxetine and a correlation of glucose metabolism during epileptogenesis with chronic seizure frequency","authors":"Marion Bankstahl ,&nbsp;Ina Jahreis ,&nbsp;Bettina J. Wolf ,&nbsp;Tobias L. Ross ,&nbsp;Jens P. Bankstahl ,&nbsp;Pablo Bascuñana","doi":"10.1016/j.neuropharm.2024.110178","DOIUrl":"10.1016/j.neuropharm.2024.110178","url":null,"abstract":"<div><div>The serotonergic system has shown to be altered during epileptogenesis and in chronic epilepsy, making selective serotonin reuptake inhibitors interesting candidates for antiepileptogenic therapy. In this study, we aimed to evaluate disease-modifying effects of fluoxetine during experimental epileptogenesis.</div><div>Status epilepticus (SE) was induced by lithium-pilocarpine, and female rats were treated either with vehicle or fluoxetine over 15 days. Animals were subjected to <sup>18</sup>F-FDG (7 days post-SE), <sup>18</sup>F-GE180 (15 days post-SE) and <sup>18</sup>F-flumazenil positron emission tomography (PET, 21 days post-SE). Uptake (<sup>18</sup>F-FDG), volume of distribution (<sup>18</sup>F-GE180) and binding potential (<sup>18</sup>F-flumazenil) were calculated. In addition, hyperexcitability testing and video-EEG monitoring were performed.</div><div>Fluoxetine treatment did not alter brain glucose metabolism. <sup>18</sup>F-GE180 PET indicated lower neuroinflammation in the hippocampus of treated animals (−22.6%, p = 0.042), but no differences were found in GABA<sub>A</sub> receptor density. Video-EEG monitoring did not reveal a treatment effect on seizure frequency. However, independently of the treatment, hippocampal FDG uptake 7 days after SE correlated with seizure frequency during the chronic phase (r = −0.58; p = 0.015).</div><div>Fluoxetine treatment exerted anti-inflammatory effects in rats during epileptogenesis. However, this effect did not alter disease outcome. Importantly, FDG-PET in early epileptogenesis showed biomarker potential as higher glucose metabolism correlated to lower seizure frequency in the chronic phase<strong>.</strong></div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"261 ","pages":"Article 110178"},"PeriodicalIF":4.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of gene-environment interactions in social dysfunction: Focus on preclinical evidence from mouse studies 基因与环境的相互作用在社会功能障碍中的作用:关注小鼠研究的临床前证据。
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-10-05 DOI: 10.1016/j.neuropharm.2024.110179
Giulia Castellano, Johana Bonnet Da Silva, Susanna Pietropaolo
{"title":"The role of gene-environment interactions in social dysfunction: Focus on preclinical evidence from mouse studies","authors":"Giulia Castellano,&nbsp;Johana Bonnet Da Silva,&nbsp;Susanna Pietropaolo","doi":"10.1016/j.neuropharm.2024.110179","DOIUrl":"10.1016/j.neuropharm.2024.110179","url":null,"abstract":"<div><div>Human and animal research has demonstrated that genetic and environmental factors can strongly modulate behavioral function, including the expression of social behaviors and their dysfunctionalities. Several genes have been linked to pathologies characterized by alterations in social behaviors, e.g., aggressive/antisocial personality disorder (ASPD), or autism spectrum disorder (ASD). Environmental stimulation (e.g., physical exercise, environmental enrichment) or adversity (e.g., chronic stress, social isolation) may respectively improve or impair social interactions. While the independent contribution of genetic and environmental factors to social behaviors has been assessed in a variety of human and animal studies, the impact of their interactive effects on social functions has been less extensively investigated. Genetic mutations and environmental changes can indeed influence each other through complex mutual effects, e.g., inducing synergistic, antagonistic or interactive behavioral outcomes. This complexity is difficult to be disentangled in human populations, thus encouraging studies in animal models, especially in the mouse species which is the most suitable for genetic manipulations. Here we review the available preclinical evidence on the impact of gene-environment interactions on social behaviors and their dysfunction, focusing on studies in laboratory mice. We included findings combining naturally occurring mutations, selectively bred or transgenic mice with multiple environmental manipulations, including positive (environmental enrichment, physical exercise) and aversive (social isolation, maternal separation, and stress) experiences. The impact of these results is critically discussed in terms of their generalizability across mouse models and social tests, as well as their implications for human studies on social dysfunction.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"261 ","pages":"Article 110179"},"PeriodicalIF":4.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P2X7 receptors modulate acquisition of cue fear extinction and contextual background memory generalization in male mice P2X7受体调节雄性小鼠对线索恐惧消退和背景记忆泛化的获得。
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-10-02 DOI: 10.1016/j.neuropharm.2024.110177
Luana Barreto Domingos , Antonio Furtado da Silva Júnior , Cassiano Ricardo Alves Faria Diniz , Jessica Rosa , Ana Luisa B. Terzian , Leonardo Barbosa Moraes Resstel
{"title":"P2X7 receptors modulate acquisition of cue fear extinction and contextual background memory generalization in male mice","authors":"Luana Barreto Domingos ,&nbsp;Antonio Furtado da Silva Júnior ,&nbsp;Cassiano Ricardo Alves Faria Diniz ,&nbsp;Jessica Rosa ,&nbsp;Ana Luisa B. Terzian ,&nbsp;Leonardo Barbosa Moraes Resstel","doi":"10.1016/j.neuropharm.2024.110177","DOIUrl":"10.1016/j.neuropharm.2024.110177","url":null,"abstract":"<div><div>The purinergic P2X7 receptors (P2X7R) are activated by adenosine triphosphate (ATP) in several brain regions, particularly those involved with emotional control and the regulation of fear-related memories. Here, we investigate the role of P2X7R in fear learning memory, specifically in the acquisition and consolidation phases of the cued fear conditioning paradigm. C57Bl/6 wildtype (WT) male mice that received a single i.p. injection of the selective P2X7R antagonist A438079 prior the conditioning session showed generalization of cued fear memory and impaired fear extinction recall in the test session, while those treated prior the extinction session exhibited a similar behavior profile accompanied by resistance in the extinction learning. However, no effects were observed when this drug was administered immediately after the conditioning, extinction, or before the test session. Our results with P2X7R knockout (P2X7 KO) mice showed a behavioral profile that mirrored the collective effects observed across all pharmacological treatment conditions. This suggests that the P2X7R KO model effectively replicates the behavioral changes induced by the pharmacological interventions, demonstrating that we have successfully isolated the role of P2X7R in the fear and extinction phases of memory. These findings highlight the role of P2X7R in the acquisition and recall of extinction memory and supports P2X7R as a promising candidate for controlling abnormal fear processing, with potential applications for stress exposure-related disorders such as post-traumatic stress disorder (PTSD).</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"261 ","pages":"Article 110177"},"PeriodicalIF":4.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Midazolam - A diazepam replacement for the management of nerve agent-induced seizures 咪达唑仑--地西泮的替代品,用于治疗神经毒剂引起的癫痫发作。
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-10-02 DOI: 10.1016/j.neuropharm.2024.110171
Lukas Gorecki , Jaroslav Pejchal , Carilyn Torruellas , Jan Korabecny , Ondrej Soukup
{"title":"Midazolam - A diazepam replacement for the management of nerve agent-induced seizures","authors":"Lukas Gorecki ,&nbsp;Jaroslav Pejchal ,&nbsp;Carilyn Torruellas ,&nbsp;Jan Korabecny ,&nbsp;Ondrej Soukup","doi":"10.1016/j.neuropharm.2024.110171","DOIUrl":"10.1016/j.neuropharm.2024.110171","url":null,"abstract":"<div><div>A benzodiazepine, diazepam, has been the leading antidote for seizures caused by nerve agents, the most toxic chemical weapons of mass destruction, since the 1960s. However, its limitations have often brought questions about its usefulness. Extensive effort has been devoted into exploring alternatives, such as other benzodiazepines, anticholinergics, or glutamate antagonists. However, only few showed clear clinical benefit. The only two options to ultimately reach clinical milestones are Avizafone, a water-soluble prodrug of diazepam adopted by the French and UK armed forces, and intramuscular midazolam, adopted by the US Army. The recently FDA-approved new intramuscular application of midazolam brought several advantages, such as rapid onset of action, short duration with predictable pharmacokinetics, increased water solubility for aqueous injectable solutions, and prolonged storage stability. Herein, we discuss the pitfalls and prospects of using midazolam as a substitute in anticonvulsant therapy with a particular focus on military purposes in combat casualty care. We have also considered and discussed several other alternatives that are currently at the experimental level. Recent studies have shown the superiority of midazolam over other benzodiazepines in the medical management of poisoned casualties. While its use in emergency care is straightforward, the proper dose for soldiers under battlefield conditions is questionable due to its sedative effects.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"261 ","pages":"Article 110171"},"PeriodicalIF":4.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrous oxide induces hypothermia and TrkB activation: Maintenance of body temperature abolishes antidepressant-like effects in mice 一氧化二氮诱导低体温和 TrkB 激活:维持体温可消除小鼠的抗抑郁样效应
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-10-02 DOI: 10.1016/j.neuropharm.2024.110172
Okko Alitalo , Samuel Kohtala , Marko Rosenholm , Roosa Saarreharju , Gemma González-Hernández , Mirkka Sarparanta , Stanislav Rozov , Tomi Rantamäki
{"title":"Nitrous oxide induces hypothermia and TrkB activation: Maintenance of body temperature abolishes antidepressant-like effects in mice","authors":"Okko Alitalo ,&nbsp;Samuel Kohtala ,&nbsp;Marko Rosenholm ,&nbsp;Roosa Saarreharju ,&nbsp;Gemma González-Hernández ,&nbsp;Mirkka Sarparanta ,&nbsp;Stanislav Rozov ,&nbsp;Tomi Rantamäki","doi":"10.1016/j.neuropharm.2024.110172","DOIUrl":"10.1016/j.neuropharm.2024.110172","url":null,"abstract":"<div><div>Recent studies indicate that nitrous oxide (N<sub>2</sub>O), a gaseous anesthetic and an NMDA (<em>N</em>-methyl-D-aspartate) receptor antagonist, produces rapid antidepressant effect in patients suffering from treatment-resistant depression. Our recent work implies that hypothermia and reduced energy expenditure are connected with antidepressant-induced activation of TrkB neurotrophin receptors — a key regulator of synaptic plasticity. In this study, we demonstrate that a brief exposure to N<sub>2</sub>O leads to a drop in body temperature following the treatment, which is linked to decreased locomotor activity; enhanced slow-wave electroencephalographic activity; reduced brain glucose utilization; and increased phosphorylation of TrkB, GSK3β (glycogen synthase kinase 3β), and p70S6K (a kinase downstream of mTor (mammalian target of rapamycin)) in the medial prefrontal cortex of adult male mice. Moreover, preventing the hypothermic response in a chronic corticosterone stress model of depression attenuated the antidepressant-like behavioral effects of N<sub>2</sub>O in the saccharin preference test. These findings indicate that N<sub>2</sub>O treatment modulates TrkB signaling and related neurotrophic signaling pathways in a temperature-dependent manner, suggesting that the phenomenon driving TrkB activation — altered thermoregulation and energy expenditure — is linked to antidepressant-like behavioral responses.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"261 ","pages":"Article 110172"},"PeriodicalIF":4.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The crucial role of NR2A mediating the activation of satellite glial cells in the trigeminal ganglion contributes to orofacial inflammatory pain during TMJ inflammation NR2A 在三叉神经节卫星神经胶质细胞的激活过程中起着至关重要的作用,它是颞下颌关节炎期间口面部炎性疼痛的原因之一。
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-09-30 DOI: 10.1016/j.neuropharm.2024.110173
Qin-Xuan Song , Yan-Yan Zhang , Yue-Ling Li , Fei Liu , Ya-Jing Liu , Yi-Ke Li , Chun-jie Li , Cheng Zhou , Jie-Fei Shen
{"title":"The crucial role of NR2A mediating the activation of satellite glial cells in the trigeminal ganglion contributes to orofacial inflammatory pain during TMJ inflammation","authors":"Qin-Xuan Song ,&nbsp;Yan-Yan Zhang ,&nbsp;Yue-Ling Li ,&nbsp;Fei Liu ,&nbsp;Ya-Jing Liu ,&nbsp;Yi-Ke Li ,&nbsp;Chun-jie Li ,&nbsp;Cheng Zhou ,&nbsp;Jie-Fei Shen","doi":"10.1016/j.neuropharm.2024.110173","DOIUrl":"10.1016/j.neuropharm.2024.110173","url":null,"abstract":"<div><div>Temporomandibular joint inflammatory diseases are a significant subtype of temporomandibular disorders (TMD) characterized by inflammatory pain in the orofacial area. The N-methyl-D-aspartate receptor (NMDAR), specifically the NR2A subtype, was crucial in neuropathic pain. However, the exact role of NR2A in inflammatory pain in the TMJ and the molecular and cellular mechanisms mediating peripheral sensitization in the trigeminal ganglion (TG) remain unclear. This study utilized male and female mice to induce the TMJOA model by injecting Complete Freund's adjuvant (CFA) into the TMJ and achieve conditional knockout (CKO) of NR2A in the TG using Cre/Loxp technology. The Von-Frey filament test results showed that CFA-induced orofacial pain with reduced mechanical withdrawal threshold (MWT), which was not developed in NR2A CKO mice. Additionally, the up-regulation of interleukin (IL)-1β, IL-6, and nerve growth factor (NGF) in the TG induced by CFA did not occur by NR2A deficiency. In vitro, NMDA activated satellite glial cells (SGCs) with high expression of glial fibrillary acidic protein (GFAP), and both NMDA and LPS led to increased IL-1β, IL-6, and NGF in SGCs. NR2A deficiency reduced these stimulating effects of NMDA and LPS. The regulation of IL-1β involved the p38, Protein Kinase A (PKA), and Protein Kinase C (PKC) pathways, while IL-6 signaling relied on PKA and PKC pathways. NGF regulation was primarily through the p38 pathway. This study highlighted NR2A's crucial role in the TG peripheral sensitization during TMJ inflammation by mediating ILs and NGF, suggesting potential targets for orofacial inflammatory pain management.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"261 ","pages":"Article 110173"},"PeriodicalIF":4.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methyltransferase METTL3 regulates neuropathic pain through m6A methylation modification of SOCS1 甲基转移酶 METTL3 通过 SOCS1 的 m6A 甲基化修饰调节神经性疼痛。
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-09-30 DOI: 10.1016/j.neuropharm.2024.110176
Liping Wu , Peng Ning , Yingye Liang , Tianyi Wang , Lingnv Chen , Dongming Lu , Hongliang Tang
{"title":"Methyltransferase METTL3 regulates neuropathic pain through m6A methylation modification of SOCS1","authors":"Liping Wu ,&nbsp;Peng Ning ,&nbsp;Yingye Liang ,&nbsp;Tianyi Wang ,&nbsp;Lingnv Chen ,&nbsp;Dongming Lu ,&nbsp;Hongliang Tang","doi":"10.1016/j.neuropharm.2024.110176","DOIUrl":"10.1016/j.neuropharm.2024.110176","url":null,"abstract":"<div><div>The mechanisms of neuropathic pain (NP) are considered multifactorial. Alterations in the suppressor of cytokine signaling 1 (SOCS1) play a critical role in neural damage and inflammation. Epigenetic RNA modifications, specifically N6-methyladenosine (m6A) methylation, have increasingly been observed to impact the nervous system. Nevertheless, there is a scarcity of studies investigating the connection between m6A methylation and SOCS1 in the molecular mechanisms of NP. This study investigates the roles and potential mechanisms of the m6A methyltransferase like 3 (METTL3) and SOCS1 in female rats with spinal nerve ligation (SNL)-induced NP. It was found that in NP, both METTL3 and overall m6A levels were downregulated, leading to the activation of pro-inflammatory cytokines, such as interleukin-1β, interleukin 6, and tumor necrosis factor-α. Notably, The SOCS1 mRNA is significantly enriched with m6A methylation modifications, with the most prevalent m6A methyltransferase METTL3 stabilizing the downregulation of SOCS1 by targeting m6A methylation modifications at positions 151, 164, and 966.Exogenous supplementation of METTL3 improved NP-related neuroinflammation and behavioral dysfunctions, but these effects could be reversed by the absence of SOCS1. Additionally, the depletion of endogenous SOCS1 promoted NP progression by inducing the toll-like receptor 4 (TLR4) signaling pathway. The dysregulation of METTL3 and the resulting m6A modification of SOCS1 form a crucial epigenetic regulatory loop that promotes the progression of NP. Targeting the METTL3/SOCS1 axis might offer new insights into potential therapeutic strategies for NP.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"261 ","pages":"Article 110176"},"PeriodicalIF":4.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methamphetamine-induced impairment of memory and fleeting neuroinflammation: Profiling mRNA changes in mouse hippocampus following short-term and long-term exposure 甲基苯丙胺诱发的记忆损伤和短暂的神经炎症:分析小鼠海马体在短期和长期暴露后的 mRNA 变化。
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-09-30 DOI: 10.1016/j.neuropharm.2024.110175
Laiqiang Wu , Xiaorui Liu , Qingchen Jiang , Ming Li , Min Liang , Shuai Wang , Rui Wang , Linlan Su , Tong Ni , Nan Dong , Li Zhu , Fanglin Guan , Jie Zhu , Wen Zhang , Min Wu , Yanjiong Chen , Teng Chen , Biao Wang
{"title":"Methamphetamine-induced impairment of memory and fleeting neuroinflammation: Profiling mRNA changes in mouse hippocampus following short-term and long-term exposure","authors":"Laiqiang Wu ,&nbsp;Xiaorui Liu ,&nbsp;Qingchen Jiang ,&nbsp;Ming Li ,&nbsp;Min Liang ,&nbsp;Shuai Wang ,&nbsp;Rui Wang ,&nbsp;Linlan Su ,&nbsp;Tong Ni ,&nbsp;Nan Dong ,&nbsp;Li Zhu ,&nbsp;Fanglin Guan ,&nbsp;Jie Zhu ,&nbsp;Wen Zhang ,&nbsp;Min Wu ,&nbsp;Yanjiong Chen ,&nbsp;Teng Chen ,&nbsp;Biao Wang","doi":"10.1016/j.neuropharm.2024.110175","DOIUrl":"10.1016/j.neuropharm.2024.110175","url":null,"abstract":"<div><div>Methamphetamine (METH) has been implicated in inducing memory impairment, but the precise mechanisms underlying this effect remain unclear. Current research often limits itself to singular models or focuses on individual gene or protein functions, which hampers a comprehensive understanding of the underlying mechanisms. In this study, we established three METH mouse exposure models, extracted hippocampal nuclei, and utilized RNA sequencing to analyze changes in mRNA expression profiles. Our results indicate that METH significantly impairs the learning and memory capabilities of mice. Additionally, we observed that METH-induced inflammatory responses occur in the early phase and do not further exacerbate with repeated injections. However, RNA sequencing revealed the persistent enrichment of inflammatory pathway molecules, which correlated with worsened behaviors. This suggests that although METH-induced neuroinflammation plays a critical role in learning and memory impairment, the continued enrichment of inflammatory pathway molecules is associated with behavioral outcomes. These findings provide crucial evidence for the potential application of immune intervention in METH-related disorders.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"261 ","pages":"Article 110175"},"PeriodicalIF":4.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信