Neural Plasticity最新文献

筛选
英文 中文
A New Neurorehabilitative Postsurgery Intervention for Facial Palsy Based on Smile Observation and Hand-Mouth Motor Synergies. 基于微笑观察和手-口运动协同作用的面瘫术后神经康复干预新方法。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2021-03-24 eCollection Date: 2021-01-01 DOI: 10.1155/2021/8890541
Elisa De Stefani, Anna Barbot, Chiara Bertolini, Mauro Belluardo, Gioacchino Garofalo, Nicola Bruno, Bernardo Bianchi, Andrea Ferri, Pier Francesco Ferrari
{"title":"A New Neurorehabilitative Postsurgery Intervention for Facial Palsy Based on Smile Observation and Hand-Mouth Motor Synergies.","authors":"Elisa De Stefani,&nbsp;Anna Barbot,&nbsp;Chiara Bertolini,&nbsp;Mauro Belluardo,&nbsp;Gioacchino Garofalo,&nbsp;Nicola Bruno,&nbsp;Bernardo Bianchi,&nbsp;Andrea Ferri,&nbsp;Pier Francesco Ferrari","doi":"10.1155/2021/8890541","DOIUrl":"https://doi.org/10.1155/2021/8890541","url":null,"abstract":"<p><strong>Objective: </strong>To perform a preliminary test of a new rehabilitation treatment (FIT-SAT), based on mirror mechanisms, for gracile muscles after smile surgery.</p><p><strong>Method: </strong>A pre- and postsurgery longitudinal design was adopted to study the efficacy of FIT-SAT. Four patients with bilateral facial nerve paralysis (Moebius syndrome) were included. They underwent two surgeries with free muscle transfers, one year apart from each other. The side of the face first operated on was rehabilitated with the traditional treatment, while the second side was rehabilitated with FIT-SAT. The FIT-SAT treatment includes video clips of an actor performing a unilateral or a bilateral smile to be imitated (FIT condition). In addition to this, while smiling, the participants close their hand in order to exploit the overlapped cortical motor representation of the hand and the mouth, which may facilitate the synergistic activity of the two effectors during the early phases of recruitment of the transplanted muscles (SAT). The treatment was also aimed at avoiding undesired movements such as teeth grinding. <i>Discussion</i>. Results support FIT-SAT as a viable alternative for smile rehabilitation after free muscle transfer. We propose that the treatment potentiates the effect of smile observation by activating the same neural structures responsible for the execution of the smile and therefore by facilitating its production. Closing of the hand induces cortical recruitment of hand motor neurons, recruiting the transplanted muscles, and reducing the risk of associating other unwanted movements such as teeth clenching to the smile movements.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2021 ","pages":"8890541"},"PeriodicalIF":3.1,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016575/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25572902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Research on Differential Brain Networks before and after WM Training under Different Frequency Band Oscillations. 不同频带振荡下WM训练前后差分脑网络的研究。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2021-03-20 eCollection Date: 2021-01-01 DOI: 10.1155/2021/6628021
Yin Tian, Huishu Zhou, Huiling Zhang, Tianhao Li
{"title":"Research on Differential Brain Networks before and after WM Training under Different Frequency Band Oscillations.","authors":"Yin Tian,&nbsp;Huishu Zhou,&nbsp;Huiling Zhang,&nbsp;Tianhao Li","doi":"10.1155/2021/6628021","DOIUrl":"https://doi.org/10.1155/2021/6628021","url":null,"abstract":"<p><p>Previous studies have shown that different frequency band oscillations are associated with cognitive processing such as working memory (WM). Electroencephalogram (EEG) coherence and graph theory can be used to measure functional connections between different brain regions and information interaction between different clusters of neurons. At the same time, it was found that better cognitive performance of individuals indicated stronger small-world characteristics of resting-state WM networks. However, little is known about the neural synchronization of the retention stage during ongoing WM tasks (i.e., online WM) by training on the whole-brain network level. Therefore, combining EEG coherence and graph theory analysis, the present study examined the topological changes of WM networks before and after training based on the whole brain and constructed differential networks with different frequency band oscillations (i.e., theta, alpha, and beta). The results showed that after WM training, the subjects' WM networks had higher clustering coefficients and shorter optimal path lengths than before training during the retention period. Moreover, the increased synchronization of the frontal theta oscillations seemed to reflect the improved executive ability of WM and the more mature resource deployment; the enhanced alpha oscillatory synchronization in the frontoparietal and fronto-occipital regions may reflect the enhanced ability to suppress irrelevant information during the delay and pay attention to memory guidance; the enhanced beta oscillatory synchronization in the temporoparietal and frontoparietal regions may indicate active memory maintenance and preparation for memory-guided attention. The findings may add new evidence to understand the neural mechanisms of WM on the changes of network topological attributes in the task-related mode.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2021 ","pages":"6628021"},"PeriodicalIF":3.1,"publicationDate":"2021-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25566041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Mitochondrial Dysfunction and Sirtuins: Important Targets in Hearing Loss 线粒体功能障碍和Sirtuins:听力损失的重要靶点
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2021-03-14 DOI: 10.1155/2021/5520794
Lingjun Zhang, Zhengde Du, S. Gong
{"title":"Mitochondrial Dysfunction and Sirtuins: Important Targets in Hearing Loss","authors":"Lingjun Zhang, Zhengde Du, S. Gong","doi":"10.1155/2021/5520794","DOIUrl":"https://doi.org/10.1155/2021/5520794","url":null,"abstract":"Mitochondrial dysfunction has been suggested to be a risk factor for sensorineural hearing loss (SNHL) induced by aging, noise, ototoxic drugs, and gene. Reactive oxygen species (ROS) are mainly derived from mitochondria, and oxidative stress induced by ROS contributes to cochlear damage as well as mitochondrial DNA mutations, which may enhance the sensitivity and severity of hearing loss and disrupt ion homeostasis (e.g., Ca2+ homeostasis). The formation and accumulation of ROS further undermine mitochondrial components and ultimately lead to apoptosis and necrosis. SIRT3–5, located in mitochondria, belong to the family of sirtuins, which are highly conserved deacetylases dependent on nicotinamide adenine dinucleotide (NAD+). These deacetylases regulate diverse cellular biochemical activities. Recent studies have revealed that mitochondrial sirtuins, especially SIRT3, modulate ROS levels in hearing loss pathologies. Although the precise functions of SIRT4 and SIRT5 in the cochlea remain unclear, the molecular mechanisms in other tissues indicate a potential protective effect against hearing loss. In this review, we summarize the current knowledge regarding the role of mitochondrial dysfunction in hearing loss, discuss possible functional links between mitochondrial sirtuins and SNHL, and propose a perspective that SIRT3–5 have a positive effect on SNHL.","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"1 1","pages":"1-10"},"PeriodicalIF":3.1,"publicationDate":"2021-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75304664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Interaction of Indirect and Hyperdirect Pathways on Synchrony and Tremor-Related Oscillation in the Basal Ganglia. 间接和超直接通路在基底节区同步和震颤相关振荡中的相互作用。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2021-03-13 eCollection Date: 2021-01-01 DOI: 10.1155/2021/6640105
Xia Shi, Danwen Du, Yuan Wang
{"title":"Interaction of Indirect and Hyperdirect Pathways on Synchrony and Tremor-Related Oscillation in the Basal Ganglia.","authors":"Xia Shi,&nbsp;Danwen Du,&nbsp;Yuan Wang","doi":"10.1155/2021/6640105","DOIUrl":"https://doi.org/10.1155/2021/6640105","url":null,"abstract":"<p><p>Low-frequency oscillatory activity (3-9 Hz) and increased synchrony in the basal ganglia (BG) are recognized to be crucial for Parkinsonian tremor. However, the dynamical mechanism underlying the tremor-related oscillations still remains unknown. In this paper, the roles of the indirect and hyperdirect pathways on synchronization and tremor-related oscillations are considered based on a modified Hodgkin-Huxley model. Firstly, the effects of indirect and hyperdirect pathways are analysed individually, which show that increased striatal activity to the globus pallidus external (GPe) or strong cortical gamma input to the subthalamic nucleus (STN) is sufficient to promote synchrony and tremor-related oscillations in the BG network. Then, the mutual effects of both pathways are analysed by adjusting the related currents simultaneously. Our results suggest that synchrony and tremor-related oscillations would be strengthened if the current of these two paths are in relative imbalance. And the network tends to be less synchronized and less tremulous when the frequency of cortical input is in the theta band. These findings may provide novel treatments in the cortex and striatum to alleviate symptoms of tremor in Parkinson's disease.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2021 ","pages":"6640105"},"PeriodicalIF":3.1,"publicationDate":"2021-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25535814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Acoustically Enriched Environment during the Critical Period of Postnatal Development Positively Modulates Gap Detection and Frequency Discrimination Abilities in Adult Rats. 出生后发育关键期声富集环境对成年大鼠间隙探测和频率识别能力有正向调节作用。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2021-03-12 eCollection Date: 2021-01-01 DOI: 10.1155/2021/6611922
Kateryna Pysanenko, Natalia Rybalko, Zbyněk Bureš, Daniel Šuta, Jiří Lindovský, Josef Syka
{"title":"Acoustically Enriched Environment during the Critical Period of Postnatal Development Positively Modulates Gap Detection and Frequency Discrimination Abilities in Adult Rats.","authors":"Kateryna Pysanenko,&nbsp;Natalia Rybalko,&nbsp;Zbyněk Bureš,&nbsp;Daniel Šuta,&nbsp;Jiří Lindovský,&nbsp;Josef Syka","doi":"10.1155/2021/6611922","DOIUrl":"https://doi.org/10.1155/2021/6611922","url":null,"abstract":"<p><p>Throughout life, sensory systems adapt to the sensory environment to provide optimal responses to relevant tasks. In the case of a developing system, sensory inputs induce changes that are permanent and detectable up to adulthood. Previously, we have shown that rearing rat pups in a complex acoustic environment (spectrally and temporally modulated sound) from postnatal day 14 (P14) to P28 permanently improves the response characteristics of neurons in the inferior colliculus and auditory cortex, influencing tonotopical arrangement, response thresholds and strength, and frequency selectivity, along with stochasticity and the reproducibility of neuronal spiking patterns. In this study, we used a set of behavioral tests based on a recording of the acoustic startle response (ASR) and its prepulse inhibition (PPI), with the aim to extend the evidence of the persistent beneficial effects of the developmental acoustical enrichment. The enriched animals were generally not more sensitive to startling sounds, and also, their PPI of ASR, induced by noise or pure tone pulses, was comparable to the controls. They did, however, exhibit a more pronounced PPI when the prepulse stimulus was represented either by a change in the frequency of a background tone or by a silent gap in background noise. The differences in the PPI of ASR between the enriched and control animals were significant at lower (55 dB SPL), but not at higher (65-75 dB SPL), intensities of background sound. Thus, rearing pups in the acoustically enriched environment led to an improvement of the frequency resolution and gap detection ability under more difficult testing conditions, i.e., with a worsened stimulus clarity. We confirmed, using behavioral tests, that an acoustically enriched environment during the critical period of development influences the frequency and temporal processing in the auditory system, and these changes persist until adulthood.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2021 ","pages":"6611922"},"PeriodicalIF":3.1,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25525046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Acute Stress and Gender Effects in Sensory Gating of the Auditory Evoked Potential in Healthy Subjects. 急性应激和性别对健康受试者听觉诱发电位感觉门控的影响。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2021-03-12 eCollection Date: 2021-01-01 DOI: 10.1155/2021/8529613
Zengyou Xin, Simeng Gu, Wei Wang, Yi Lei, Hong Li
{"title":"Acute Stress and Gender Effects in Sensory Gating of the Auditory Evoked Potential in Healthy Subjects.","authors":"Zengyou Xin,&nbsp;Simeng Gu,&nbsp;Wei Wang,&nbsp;Yi Lei,&nbsp;Hong Li","doi":"10.1155/2021/8529613","DOIUrl":"https://doi.org/10.1155/2021/8529613","url":null,"abstract":"<p><p>Sensory gating is a neurophysiological measure of inhibition that is characterized by a reduction in the P<sub>50</sub>, N<sub>100</sub>, and P<sub>200</sub> event-related potentials to a repeated identical stimulus. It was proposed that abnormal sensory gating is involved in the neural pathological basis of some severe mental disorders. Since then, the prevailing application of sensory gating measures has been in the study of neuropathology associated with schizophrenia and so on. However, sensory gating is not only trait-like but can be also state-like, and measures of sensory gating seemed to be affected by several factors in healthy subjects. The objective of this work was to clarify the roles of acute stress and gender in sensory gating. Data showed acute stress impaired inhibition of P<sub>50</sub> to the second click in the paired-click paradigm without effects on sensory registration leading to worse P<sub>50</sub> sensory gating and disrupted attention allocation reflected by attenuated P<sub>200</sub> responses than control condition, without gender effects. As for N<sub>100</sub> and P<sub>200</sub> gating, women showed slightly better than men without effects of acute stress. Data also showed slightly larger N<sub>100</sub> amplitudes across clicks and significant larger P<sub>200</sub> amplitude to the first click for women, suggesting that women might be more alert than men.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2021 ","pages":"8529613"},"PeriodicalIF":3.1,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7981181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25525048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An Exploratory Study of Training Intensity in EEG Neurofeedback. 脑电图神经反馈训练强度的探索性研究
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2021-03-11 eCollection Date: 2021-01-01 DOI: 10.1155/2021/8881059
Inês Esteves, Wenya Nan, Cristiana Alves, Alexandre Calapez, Fernando Melício, Agostinho Rosa
{"title":"An Exploratory Study of Training Intensity in EEG Neurofeedback.","authors":"Inês Esteves, Wenya Nan, Cristiana Alves, Alexandre Calapez, Fernando Melício, Agostinho Rosa","doi":"10.1155/2021/8881059","DOIUrl":"10.1155/2021/8881059","url":null,"abstract":"<p><p>Neurofeedback training has shown benefits in clinical treatment and behavioral performance enhancement. Despite the wide range of applications, no consensus has been reached about the optimal training schedule. In this work, an EEG neurofeedback practical experiment was conducted aimed at investigating the effects of training intensity on the enhancement of the amplitude in the individual upper alpha band. We designed INTENSIVE and SPARSE training modalities, which differed regarding three essential aspects of training intensity: the number of sessions, the duration of a session, and the interval between sessions. Nine participants in the INTENSIVE group completed 4 sessions with 37.5 minutes each during consecutive days, while nine participants in the SPARSE group performed 6 sessions of 25 minutes spread over approximately 3 weeks. As a result, regarding the short-term effects, the upper alpha band amplitude change within sessions did not significantly differ between the two groups. Nonetheless, only the INTENSIVE group showed a significant increase in the upper alpha band amplitude. However, for the sustained effects across sessions, none of the groups showed significant changes in the upper alpha band amplitude across the whole course of training. The findings suggest that the progression within session is favored by the intensive design. Therefore, based on these findings, it is proposed that training intensity influences EEG self-regulation within sessions. Further investigations are needed to isolate different aspects of training intensity and effectively confirm if one modality globally outperforms the other.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2021 ","pages":"8881059"},"PeriodicalIF":3.1,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25525049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weakened Effective Connectivity Related to Electroacupuncture in Stroke Patients with Prolonged Flaccid Paralysis: An EEG Pilot Study. 电针治疗脑卒中伴持续性弛缓性麻痹的有效连通性减弱:一项脑电图初步研究。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2021-03-09 eCollection Date: 2021-01-01 DOI: 10.1155/2021/6641506
Yi-Fang Lin, Xin-Hua Liu, Zheng-Yu Cui, Zuo-Ting Song, Fei Zou, Shu-Geng Chen, Xiao-Yang Kang, Bin Ye, Qiang Wang, Jing Tian, Jie Jia
{"title":"Weakened Effective Connectivity Related to Electroacupuncture in Stroke Patients with Prolonged Flaccid Paralysis: An EEG Pilot Study.","authors":"Yi-Fang Lin,&nbsp;Xin-Hua Liu,&nbsp;Zheng-Yu Cui,&nbsp;Zuo-Ting Song,&nbsp;Fei Zou,&nbsp;Shu-Geng Chen,&nbsp;Xiao-Yang Kang,&nbsp;Bin Ye,&nbsp;Qiang Wang,&nbsp;Jing Tian,&nbsp;Jie Jia","doi":"10.1155/2021/6641506","DOIUrl":"https://doi.org/10.1155/2021/6641506","url":null,"abstract":"<p><p>Flaccid paralysis in the upper extremity is a severe motor impairment after stroke, which exists for weeks, months, or even years. Electroacupuncture treatment is one of the most widely used TCM therapeutic interventions for poststroke flaccid paralysis. However, the response to electroacupuncture in different durations of flaccid stage poststroke as well as in the topological configuration of the cortical network remains unclear. The objectives of this study are to explore the disruption of the cortical network in patients in different durations of flaccid stage and observe dynamic network reorganization during and after electroacupuncture. Resting-state networks were constructed from 18 subjects with flaccid upper extremity by partial directed coherence (PDC) analysis of multichannel EEG. They were allocated to three groups according to time after flaccid paralysis: the short-duration group (those with flaccidity for less than two months), the medium-duration group (those with flaccidity between two months and six months), and the long-duration group (those with flaccidity over six months). Compared with short-duration flaccid subjects, weakened effective connectivity was presented in medium-duration and long-duration groups before electroacupuncture. The long-duration group has no response in the cortical network during electroacupuncture. The global network measures of EEG data (sPDC, mPDC, and <i>N</i>) indicated that there was no significant difference among the three groups. These results suggested that the network connectivity reduced and weakly responded to electroacupuncture in patients with flaccid paralysis for over six months. These findings may help us to modulate the formulation of electroacupuncture treatment according to different durations of the flaccid upper extremity.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2021 ","pages":"6641506"},"PeriodicalIF":3.1,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25525047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Effect of Acupuncture Stimulation of Hegu (LI4) and Taichong (LR3) on the Resting-State Networks in Alzheimer's Disease: Beyond the Default Mode Network. 针刺刺激合谷(LI4)和太中(LR3)对阿尔茨海默病静息状态网络的影响:超越默认模式网络。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2021-03-08 eCollection Date: 2021-01-01 DOI: 10.1155/2021/8876873
Shaozhen Ji, Hao Zhang, Wen Qin, Ming Liu, Weimin Zheng, Ying Han, Haiqing Song, Kuncheng Li, Jie Lu, Zhiqun Wang
{"title":"Effect of Acupuncture Stimulation of Hegu (LI4) and Taichong (LR3) on the Resting-State Networks in Alzheimer's Disease: Beyond the Default Mode Network.","authors":"Shaozhen Ji,&nbsp;Hao Zhang,&nbsp;Wen Qin,&nbsp;Ming Liu,&nbsp;Weimin Zheng,&nbsp;Ying Han,&nbsp;Haiqing Song,&nbsp;Kuncheng Li,&nbsp;Jie Lu,&nbsp;Zhiqun Wang","doi":"10.1155/2021/8876873","DOIUrl":"https://doi.org/10.1155/2021/8876873","url":null,"abstract":"<p><p>It was reported that acupuncture could treat Alzheimer's disease (AD) with the potential mechanisms remaining unclear. The aim of the study is to explore the effect of the combination stimulus of Hegu (LI4) and Taichong (LR3) on the resting-state brain networks in AD, beyond the default network (DMN). Twenty-eight subjects including 14 AD patients and 14 healthy controls (HCs) matched by age, gender, and educational level were recruited in this study. After the baseline resting-state MRI scans, the manual acupuncture stimulation was performed for 3 minutes, and then, another 10 minutes of resting-state fMRI scans was acquired. In addition to the DMN, five other resting-state networks were identified by independent component analysis (ICA), including left frontal parietal network (lFPN), right frontal parietal network (rFPN), visual network (VN), sensorimotor network (SMN), and auditory network (AN). And the impaired connectivity in the lFPN, rFPN, SMN, and VN was found in AD patients compared with those in HCs. After acupuncture, significantly decreased connectivity in the right middle frontal gyrus (MFG) of rFPN (<i>P</i> = 0.007) was identified in AD patients. However, reduced connectivity in the right inferior frontal gyrus (IFG) (<i>P</i> = 0.047) and left superior frontal gyrus (SFG) (<i>P</i> = 0.041) of lFPN and some regions of the SMN (the left inferior parietal lobula (<i>P</i> = 0.004), left postcentral gyrus (PoCG) (<i>P</i> = 0.001), right PoCG (<i>P</i> = 0.032), and right MFG (<i>P</i> = 0.010)) and the right MOG of VN (<i>P</i> = 0.003) was indicated in HCs. In addition, after controlling for the effect of acupuncture on HCs, the functional connectivity of the right cerebellum crus I, left IFG, and left angular gyrus (AG) of lFPN showed to be decreased, while the left MFG of IFPN and the right lingual gyrus of VN increased in AD patients. These findings might have some reference values for the interpretation of the combination stimulus of Hegu (LI4) and Taichong (LR3) in AD patients, which could deepen our understanding of the potential mechanisms of acupuncture on AD.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2021 ","pages":"8876873"},"PeriodicalIF":3.1,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960059/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25500964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Resting-State Network Plasticity Induced by Music Therapy after Traumatic Brain Injury. 外伤性脑损伤后音乐治疗对静息状态网络可塑性的影响。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2021-03-08 eCollection Date: 2021-01-01 DOI: 10.1155/2021/6682471
Noelia Martínez-Molina, Sini-Tuuli Siponkoski, Linda Kuusela, Sari Laitinen, Milla Holma, Mirja Ahlfors, Päivi Jordan-Kilkki, Katja Ala-Kauhaluoma, Susanna Melkas, Johanna Pekkola, Antoni Rodríguez-Fornells, Matti Laine, Aarne Ylinen, Pekka Rantanen, Sanna Koskinen, Benjamin Ultan Cowley, Teppo Särkämö
{"title":"Resting-State Network Plasticity Induced by Music Therapy after Traumatic Brain Injury.","authors":"Noelia Martínez-Molina,&nbsp;Sini-Tuuli Siponkoski,&nbsp;Linda Kuusela,&nbsp;Sari Laitinen,&nbsp;Milla Holma,&nbsp;Mirja Ahlfors,&nbsp;Päivi Jordan-Kilkki,&nbsp;Katja Ala-Kauhaluoma,&nbsp;Susanna Melkas,&nbsp;Johanna Pekkola,&nbsp;Antoni Rodríguez-Fornells,&nbsp;Matti Laine,&nbsp;Aarne Ylinen,&nbsp;Pekka Rantanen,&nbsp;Sanna Koskinen,&nbsp;Benjamin Ultan Cowley,&nbsp;Teppo Särkämö","doi":"10.1155/2021/6682471","DOIUrl":"https://doi.org/10.1155/2021/6682471","url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is characterized by a complex pattern of abnormalities in resting-state functional connectivity (rsFC) and network dysfunction, which can potentially be ameliorated by rehabilitation. In our previous randomized controlled trial, we found that a 3-month neurological music therapy intervention enhanced executive function (EF) and increased grey matter volume in the right inferior frontal gyrus (IFG) in patients with moderate-to-severe TBI (<i>N</i> = 40). Extending this study, we performed longitudinal rsFC analyses of resting-state fMRI data using a ROI-to-ROI approach assessing within-network and between-network rsFC in the frontoparietal (FPN), dorsal attention (DAN), default mode (DMN), and salience (SAL) networks, which all have been associated with cognitive impairment after TBI. We also performed a seed-based connectivity analysis between the right IFG and whole-brain rsFC. The results showed that neurological music therapy increased the coupling between the FPN and DAN as well as between these networks and primary sensory networks. By contrast, the DMN was less connected with sensory networks after the intervention. Similarly, there was a shift towards a less connected state within the FPN and SAL networks, which are typically hyperconnected following TBI. Improvements in EF were correlated with rsFC within the FPN and between the DMN and sensorimotor networks. Finally, in the seed-based connectivity analysis, the right IFG showed increased rsFC with the right inferior parietal and left frontoparietal (Rolandic operculum) regions. Together, these results indicate that the rehabilitative effects of neurological music therapy after TBI are underpinned by a pattern of within- and between-network connectivity changes in cognitive networks as well as increased connectivity between frontal and parietal regions associated with music processing.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2021 ","pages":"6682471"},"PeriodicalIF":3.1,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7964116/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25514033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信