ACS Macro Letters最新文献

筛选
英文 中文
High-Resolution Total Internal Reflection-Based Structural Coloration by Electrohydrodynamic Jet Printing of Transparent Polyethylene Glycol Microdomes. 通过电流体动力喷射打印透明聚乙二醇微域实现基于全内反射的高分辨率结构着色。
IF 5.1
ACS Macro Letters Pub Date : 2024-12-17 Epub Date: 2024-11-14 DOI: 10.1021/acsmacrolett.4c00512
Dongho Lee, Doyoung Byun, Dae-Hyun Cho
{"title":"High-Resolution Total Internal Reflection-Based Structural Coloration by Electrohydrodynamic Jet Printing of Transparent Polyethylene Glycol Microdomes.","authors":"Dongho Lee, Doyoung Byun, Dae-Hyun Cho","doi":"10.1021/acsmacrolett.4c00512","DOIUrl":"10.1021/acsmacrolett.4c00512","url":null,"abstract":"<p><p>Total internal reflection (TIR)-based structural coloration is a brilliant strategy to overcome the need for periodic nanostructures and complex fabrication processes. Light entering the microdome structure undergoes TIR, and owing to varying reflection paths, it exhibits a color that changes with the microdome size. Although solution-based printing techniques have been proposed to achieve this effect, they fall short of full-color realization owing to resolution limitations. Herein, we achieved 3628 dpi of full-color and high-resolution structural color images by printing transparent microdome structures with 1.2-9.9 μm diameter using electrohydrodynamic (EHD) jet printing. Additionally, high-resolution EHD jet-printed structural color images display complex encoded information, enhancing the anticounterfeiting effectiveness through their fabrication simplicity and precise control over the microdome size. Because of these advantages, this TIR-based structural coloration technique with EHD jet printing is highly suitable for anticounterfeiting applications.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":" ","pages":"1634-1639"},"PeriodicalIF":5.1,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Injectable Self-Healing and Anti-Dissolving Low-Molecular-Weight Hydrogels Enabled by Ionic Cross-Linking for Cell Encapsulation
IF 5.8
ACS Macro Letters Pub Date : 2024-12-17 DOI: 10.1021/acsmacrolett.4c00725
Jiahao Zhang, Kaiyu Jin, Yifei Feng, Da Lu, Mai Chen, Hucheng Wang, Cheng Jin, Dengyu Wang, Zhiling Li, Yiming Wang
{"title":"Injectable Self-Healing and Anti-Dissolving Low-Molecular-Weight Hydrogels Enabled by Ionic Cross-Linking for Cell Encapsulation","authors":"Jiahao Zhang, Kaiyu Jin, Yifei Feng, Da Lu, Mai Chen, Hucheng Wang, Cheng Jin, Dengyu Wang, Zhiling Li, Yiming Wang","doi":"10.1021/acsmacrolett.4c00725","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00725","url":null,"abstract":"Injectable behavior is often observed in polymer-based hydrogels yet is rarely achieved in low-molecular-weight hydrogels (LMWHs), the realization of which may boost the development of new soft materials for biomedical applications. Here, we report on injectable self-healing and antidissolving LMWHs that are formed through a simple ionic cross-linking strategy, showing a fundamental application for the encapsulation of living cells. The LMWHs are formed by simply mixing Ca<sup>2+</sup> with negatively charged supramolecular polymers. Surprisingly, the resultant hydrogels are capable of rapidly self-healing within seconds after damage, showing an unexpected injectable function. When the hydrogel is injected into an aqueous medium, continuous macroscopic hydrogel fibers can be produced. Interestingly, the hydrogel can remain intact in the aqueous medium, showing impressive antidissolving behavior which is less observed in other LMWHs. Furthermore, the hydrogel is demonstrated to be nontoxic and can be used as a cytocompatible scaffold for living cells. This work may open an avenue toward injectable and antidissolving LMWHs for the ever-expanding list of applications in biotherapy and bioprinting.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"78 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142840902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanochemical Release of 9,10-Diphenylanthracene via Flex-Activation of Its 1,4-Diels–Alder Adduct
IF 5.8
ACS Macro Letters Pub Date : 2024-12-16 DOI: 10.1021/acsmacrolett.4c00766
Hui Hu, Lvjiang Meng, Yang Zhou, Yujing Chen, Yecheng Zhou, Bin Xi, Yuanchao Li
{"title":"Mechanochemical Release of 9,10-Diphenylanthracene via Flex-Activation of Its 1,4-Diels–Alder Adduct","authors":"Hui Hu, Lvjiang Meng, Yang Zhou, Yujing Chen, Yecheng Zhou, Bin Xi, Yuanchao Li","doi":"10.1021/acsmacrolett.4c00766","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00766","url":null,"abstract":"Flex-activated mechanophores capable of releasing small molecules utilize bond bending to facilitate their mechanochemical activation without compromising the overall macromolecular architecture, which have great potential in various applications. However, the development of such mechanophores remains underexplored. Here we report a novel flex-activated mechanophore based on the 1,4-Diels–Alder (DA) adduct of 9,10-diphenylanthracene (DPA) with acetylenedicarboxylate (ADC). Compression of the mechanophore-crosslinked polymer networks mechanochemically activates the weakly fluorescent DPA-ADC mechanophores to undergo a retro-DA reaction in accompany with the release of highly fluorescent DPA molecules (quantum yield close to unity), as confirmed by fluorescence spectroscopy and gas chromatography–mass spectrometry (GC-MS) analysis. As a new member of the small family of flex-activated mechanophores, this fluorogenic DPA-ADC mechanophore possesses promising applications in stress sensing and damage detection.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"55 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Guest Orientation in Host–Guest Supramolecular Hydrogels
IF 5.8
ACS Macro Letters Pub Date : 2024-12-13 DOI: 10.1021/acsmacrolett.4c00531
Christopher J. Addonizio, Adam S. Braegelman, Connor R. Schmidt, Rachel C. Ollier, Akwasi Ansah Antwi, Bo Su, Mohsen Farshad, Jonathan K. Whitmer, Matthew J. Webber
{"title":"Impact of Guest Orientation in Host–Guest Supramolecular Hydrogels","authors":"Christopher J. Addonizio, Adam S. Braegelman, Connor R. Schmidt, Rachel C. Ollier, Akwasi Ansah Antwi, Bo Su, Mohsen Farshad, Jonathan K. Whitmer, Matthew J. Webber","doi":"10.1021/acsmacrolett.4c00531","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00531","url":null,"abstract":"Host–guest interactions have been increasingly explored for use in the dynamic physical cross-linking of polymeric precursors to form hydrogel networks. However, the orientation of guest motifs is restricted upon macromolecule conjugation. The implications of such restriction on both the kinetics and thermodynamics of the resulting host–guest supramolecular cross-links are poorly understood. Herein, guest cross-linking motifs from controlled regioisomers are demonstrated to yield distinct material properties. Moreover, the underlying phenomena point to a further unexpected impact of modular guest topology on the molecular scale in both the affinity and dynamics of supramolecular complex formation.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"93 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Polymer Architecture on the Structure of Complex Coacervate Core Micelles: AB + AC versus AB + C Systems
IF 5.8
ACS Macro Letters Pub Date : 2024-12-12 DOI: 10.1021/acsmacrolett.4c00679
Moon-Chul Ryu, Soo-Hyung Choi
{"title":"Influence of Polymer Architecture on the Structure of Complex Coacervate Core Micelles: AB + AC versus AB + C Systems","authors":"Moon-Chul Ryu, Soo-Hyung Choi","doi":"10.1021/acsmacrolett.4c00679","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00679","url":null,"abstract":"Complex coacervate core micelles (C3Ms), formed through electrostatic interactions between oppositely charged block copolyelectrolytes, are effective delivery vehicles for hydrophilic biomacromolecules. This study investigates the impact of polymer architecture on the C3Ms structure by blending homopolyelectrolytes and diblock copolyelectrolytes as anionic counterparts for cationic diblock copolyelectrolytes. Our results show that the micellar structure, including core size, aggregation number, and corona characteristics, is precisely controlled by the fraction of homopolyelectrolytes. C3Ms formed by the AB + C system have larger core dimensions and aggregation numbers but lower corona brush densities compared to AB + AC systems. These findings highlight that the spatial constraints of polyelectrolytes play a crucial role in determining micellar structure, which can be further understood by balancing the free energies contributed by core block stretching and interfacial tension.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"10 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Cross-Linked Polyolefins through Tandem ROMP/Hydrogenation”
IF 5.8
ACS Macro Letters Pub Date : 2024-12-09 DOI: 10.1021/acsmacrolett.4c00775
Caitlin S. Sample, Brenden D. Hoehn, Marc A. Hillmyer
{"title":"Correction to “Cross-Linked Polyolefins through Tandem ROMP/Hydrogenation”","authors":"Caitlin S. Sample, Brenden D. Hoehn, Marc A. Hillmyer","doi":"10.1021/acsmacrolett.4c00775","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00775","url":null,"abstract":"In our original publication, we made an error in Figure 4 and the corresponding caption. The legend labels in Figure 4b are inverted, with the gray curves incorrectly labeled as “C90D10” and the black curves as “C10D90”. The caption has an additional typographical error. These errors do not affect the results or conclusions of the article, as the values in Figure 4a and the associated discussion reference the accurate data. The corrected versions of Figure 4 and the caption are presented here. Figure 4. (a) Mechanical properties of samples before and after hydrogenation. Values are average ± standard deviation for 5 (C90D10, C10D90, H–C10D90) or 3 (H–C90D10) replicates. (b) Representative tensile curves for C90D10, H–C90D10, C10D90, and H–C10D90. *Samples pulled out from grips. This article has not yet been cited by other publications.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"56 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Monomer Recovery from Ring-Closing Depolymerization of Thermosets
IF 5.1
ACS Macro Letters Pub Date : 2024-12-07 DOI: 10.1021/acsmacrolett.4c0066510.1021/acsmacrolett.4c00665
Chihui Zheng, Gadi Slor, Youwei Ma* and Francesco Stellacci*, 
{"title":"Direct Monomer Recovery from Ring-Closing Depolymerization of Thermosets","authors":"Chihui Zheng,&nbsp;Gadi Slor,&nbsp;Youwei Ma* and Francesco Stellacci*,&nbsp;","doi":"10.1021/acsmacrolett.4c0066510.1021/acsmacrolett.4c00665","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00665https://doi.org/10.1021/acsmacrolett.4c00665","url":null,"abstract":"<p >Recovering monomers from the depolymerization of thermosets presents a significant challenge, which becomes even more daunting if one sets the goal of doing it directly, i.e., without complex chemical separation steps. To this end, we have synthesized a new type of polycarbonate thermoset by first copolymerizing alkyl cyclic carbonates (<b>ACC</b>s) with small amounts of allyloxy cyclic carbonates (<b>AoCC</b>s), followed by cross-linking the resulting allyloxy polycarbonate with excess tetrathiol compounds under UV irradiation. These cross-linked polycarbonates demonstrate enhanced thermal and mechanical properties compared to their linear analogues, while maintaining the linear polymers’ capacity for ring-closing depolymerization. The depolymerization process enables the direct recovery of <b>ACC</b> and its dimer, bypassing complex chemical separation steps that are commonly employed in the recycling of conventional chemically recyclable thermosets. The yields range from 74.7% to 91.7% depending on the ratios of <b>AoCC</b> to <b>ACC</b> in the thermosets. Furthermore, the recovered compounds can be repolymerized with <b>AoCC</b>s leading to polycarbonate of the same quality to the initially synthesized one.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"13 12","pages":"1704–1710 1704–1710"},"PeriodicalIF":5.1,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmacrolett.4c00665","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142842273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Monomer Recovery from Ring-Closing Depolymerization of Thermosets
IF 5.8
ACS Macro Letters Pub Date : 2024-12-07 DOI: 10.1021/acsmacrolett.4c00665
Chihui Zheng, Gadi Slor, Youwei Ma, Francesco Stellacci
{"title":"Direct Monomer Recovery from Ring-Closing Depolymerization of Thermosets","authors":"Chihui Zheng, Gadi Slor, Youwei Ma, Francesco Stellacci","doi":"10.1021/acsmacrolett.4c00665","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00665","url":null,"abstract":"Recovering monomers from the depolymerization of thermosets presents a significant challenge, which becomes even more daunting if one sets the goal of doing it directly, i.e., without complex chemical separation steps. To this end, we have synthesized a new type of polycarbonate thermoset by first copolymerizing alkyl cyclic carbonates (<b>ACC</b>s) with small amounts of allyloxy cyclic carbonates (<b>AoCC</b>s), followed by cross-linking the resulting allyloxy polycarbonate with excess tetrathiol compounds under UV irradiation. These cross-linked polycarbonates demonstrate enhanced thermal and mechanical properties compared to their linear analogues, while maintaining the linear polymers’ capacity for ring-closing depolymerization. The depolymerization process enables the direct recovery of <b>ACC</b> and its dimer, bypassing complex chemical separation steps that are commonly employed in the recycling of conventional chemically recyclable thermosets. The yields range from 74.7% to 91.7% depending on the ratios of <b>AoCC</b> to <b>ACC</b> in the thermosets. Furthermore, the recovered compounds can be repolymerized with <b>AoCC</b>s leading to polycarbonate of the same quality to the initially synthesized one.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"220 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142788623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Ordered Bimodal Mesoporous Carbon from ABC Triblock Terpolymers with Phenolic Resol
IF 5.8
ACS Macro Letters Pub Date : 2024-12-05 DOI: 10.1021/acsmacrolett.4c00651
Yuta Miyamori, Youngwon Kong, Yuta Nabae, Kan Hatakeyama-Sato, Teruaki Hayakawa
{"title":"Highly Ordered Bimodal Mesoporous Carbon from ABC Triblock Terpolymers with Phenolic Resol","authors":"Yuta Miyamori, Youngwon Kong, Yuta Nabae, Kan Hatakeyama-Sato, Teruaki Hayakawa","doi":"10.1021/acsmacrolett.4c00651","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00651","url":null,"abstract":"Mesoporous carbons (MPCs) with a bimodal distribution of pore diameters are more advantageous than their monomodal counterparts for applications in adsorption, catalysis, and drug delivery systems; however, reports on their fabrication remain limited. In this study, we successfully fabricated bimodal MPCs using a soft template method with poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA)-<i>b</i>-poly(4-vinylpyridine) (P4VP)-<i>b</i>-polystyrene (PS) and resol. The blend samples formed microphase-separated structures comprising PTFEMA spheres, PS cylinders, and matrix domains composed of P4VP and resol, leading to the separation of the PTFEMA and PS domains. The P4VP and resol matrix domains were carbonized at a high temperature of 900 °C, whereas the PTFEMA and PS domains were thermally decomposed. This process resulted in bimodal MPCs with both spherical and cylindrical mesopores. The pore diameters calculated using scanning electron microscopy were approximately 10 and 30 nm, while nitrogen adsorption measurements indicated a large specific surface area with a bimodal pore distribution.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"79 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Ordered Bimodal Mesoporous Carbon from ABC Triblock Terpolymers with Phenolic Resol
IF 5.1
ACS Macro Letters Pub Date : 2024-12-05 DOI: 10.1021/acsmacrolett.4c0065110.1021/acsmacrolett.4c00651
Yuta Miyamori, Youngwon Kong, Yuta Nabae, Kan Hatakeyama-Sato and Teruaki Hayakawa*, 
{"title":"Highly Ordered Bimodal Mesoporous Carbon from ABC Triblock Terpolymers with Phenolic Resol","authors":"Yuta Miyamori,&nbsp;Youngwon Kong,&nbsp;Yuta Nabae,&nbsp;Kan Hatakeyama-Sato and Teruaki Hayakawa*,&nbsp;","doi":"10.1021/acsmacrolett.4c0065110.1021/acsmacrolett.4c00651","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00651https://doi.org/10.1021/acsmacrolett.4c00651","url":null,"abstract":"<p >Mesoporous carbons (MPCs) with a bimodal distribution of pore diameters are more advantageous than their monomodal counterparts for applications in adsorption, catalysis, and drug delivery systems; however, reports on their fabrication remain limited. In this study, we successfully fabricated bimodal MPCs using a soft template method with poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA)-<i>b</i>-poly(4-vinylpyridine) (P4VP)-<i>b</i>-polystyrene (PS) and resol. The blend samples formed microphase-separated structures comprising PTFEMA spheres, PS cylinders, and matrix domains composed of P4VP and resol, leading to the separation of the PTFEMA and PS domains. The P4VP and resol matrix domains were carbonized at a high temperature of 900 °C, whereas the PTFEMA and PS domains were thermally decomposed. This process resulted in bimodal MPCs with both spherical and cylindrical mesopores. The pore diameters calculated using scanning electron microscopy were approximately 10 and 30 nm, while nitrogen adsorption measurements indicated a large specific surface area with a bimodal pore distribution.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"13 12","pages":"1698–1703 1698–1703"},"PeriodicalIF":5.1,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmacrolett.4c00651","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信