用中子自旋回波光谱研究环形-线性共混体系中聚合物环的动力学。

IF 5.2 Q1 POLYMER SCIENCE
Margarita Kruteva,Jürgen Allgaier,Michael Monkenbusch,Peter Falus,Katerina Peponaki,Dimitris Vlassopoulos,Dieter Richter
{"title":"用中子自旋回波光谱研究环形-线性共混体系中聚合物环的动力学。","authors":"Margarita Kruteva,Jürgen Allgaier,Michael Monkenbusch,Peter Falus,Katerina Peponaki,Dimitris Vlassopoulos,Dieter Richter","doi":"10.1021/acsmacrolett.5c00507","DOIUrl":null,"url":null,"abstract":"We present a microscopic investigation of the polyethylene-oxide (PEO) ring dynamics in symmetric ring-linear blends with a molecular weight of 40 kg/mol over the full concentration range. Applying neutron spin echo (NSE) spectroscopy on samples containing a fraction of labeled rings, we observe the internal ring dynamics and its modifications as a function of ring volume fraction ϕR. With increasing linear composition, a dynamic cross over from self-similar ring-like relaxation to local reptation-like dynamics is observed. At ϕR = 0.5, where the blend viscosity exhibits its maximum, the spectral shapes change from ring- to local reptation-type dynamics, even though the enacted constraints are weaker than those in the linear melt. For ϕR ≤ 0.35, the ring motion is completely enslaved by the linear host.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"53 1","pages":"1396-1401"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Polymer Rings in Ring-Linear Blends by Neutron Spin Echo Spectroscopy.\",\"authors\":\"Margarita Kruteva,Jürgen Allgaier,Michael Monkenbusch,Peter Falus,Katerina Peponaki,Dimitris Vlassopoulos,Dieter Richter\",\"doi\":\"10.1021/acsmacrolett.5c00507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a microscopic investigation of the polyethylene-oxide (PEO) ring dynamics in symmetric ring-linear blends with a molecular weight of 40 kg/mol over the full concentration range. Applying neutron spin echo (NSE) spectroscopy on samples containing a fraction of labeled rings, we observe the internal ring dynamics and its modifications as a function of ring volume fraction ϕR. With increasing linear composition, a dynamic cross over from self-similar ring-like relaxation to local reptation-like dynamics is observed. At ϕR = 0.5, where the blend viscosity exhibits its maximum, the spectral shapes change from ring- to local reptation-type dynamics, even though the enacted constraints are weaker than those in the linear melt. For ϕR ≤ 0.35, the ring motion is completely enslaved by the linear host.\",\"PeriodicalId\":18,\"journal\":{\"name\":\"ACS Macro Letters\",\"volume\":\"53 1\",\"pages\":\"1396-1401\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Macro Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmacrolett.5c00507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.5c00507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个微观研究聚乙烯氧化物(PEO)环动力学对称环线性共混物的分子量为40 kg/mol在整个浓度范围内。利用中子自旋回波(NSE)光谱对含有标记环的样品进行分析,观察了环内动力学及其随环体积分数(ϕR)的变化规律。随着线性组成的增加,观察到从自相似的环状松弛到局部重复动力学的动态交叉。在ϕR = 0.5处,即共混物粘度达到最大值时,光谱形状从环形动力学变为局部重复动力学,尽管所制定的约束比线性熔体中的约束更弱。当ϕR≤0.35时,环的运动完全受线性主机支配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of Polymer Rings in Ring-Linear Blends by Neutron Spin Echo Spectroscopy.
We present a microscopic investigation of the polyethylene-oxide (PEO) ring dynamics in symmetric ring-linear blends with a molecular weight of 40 kg/mol over the full concentration range. Applying neutron spin echo (NSE) spectroscopy on samples containing a fraction of labeled rings, we observe the internal ring dynamics and its modifications as a function of ring volume fraction ϕR. With increasing linear composition, a dynamic cross over from self-similar ring-like relaxation to local reptation-like dynamics is observed. At ϕR = 0.5, where the blend viscosity exhibits its maximum, the spectral shapes change from ring- to local reptation-type dynamics, even though the enacted constraints are weaker than those in the linear melt. For ϕR ≤ 0.35, the ring motion is completely enslaved by the linear host.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.40
自引率
3.40%
发文量
209
审稿时长
1 months
期刊介绍: ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science. With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信