E. Hassan, Zaid Saud Razzaq, Huda Ashur Shati Qutbi, S. Chiad, N. Habubi, K. Abass
{"title":"Sensitivity of Cadmium Sulfide under the Influence of Both Substrate Temperature and Gas Operation","authors":"E. Hassan, Zaid Saud Razzaq, Huda Ashur Shati Qutbi, S. Chiad, N. Habubi, K. Abass","doi":"10.5101/nbe.v13i4.p425-432","DOIUrl":"https://doi.org/10.5101/nbe.v13i4.p425-432","url":null,"abstract":"The importance of this research is to study the effect of changing the temperature at the same time on each of the prepared samples and during the gas sensing processes, the effects of substrate temperature Ts were investigated after precipitation by the microstructural and optical characteristics of cadmium sulfide using thermal spraying method with different temperatures of (300, 400, and 500) °C. The structural investigations of these films were studied, showing that the increases in substrate temperature were shown cubic and hexagonal phases according to ICDD card no. (21-0929) and (43-0989). The dramatic change occurred at 500 °C in changing the phase from hexagonal to a cubic structure. XRD exhibits a dominant plane at (200) for different substrate temperatures. Optical transmittance, absorption coefficient, and energy gap values were calculated by UV/VIS spectrophotometer. These results showed that the band gap values decreased with increasing substrate temperature. The gas sensitivity was tested for NO2 gas at several working temperatures from 175 °C to 250 °C, and various gas concentrations from 150 ppm to 200 ppm and found that the sensitivity increase with increasing both the operating temperature and gas concentration for a Ts at 500 °C which offer also the best crystallization the best sensitivity at an operating temperature of 175 °C is 75% at a gas concentration of 150 ppm.","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47587202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical Detection of the Toxicity of Nanoparticles of Metals and Metal Oxides","authors":"S. Rashdan","doi":"10.5101/nbe.v13i4.p401-413","DOIUrl":"https://doi.org/10.5101/nbe.v13i4.p401-413","url":null,"abstract":"The wide applications of nanoparticles increased the demand for their risk assessment, a number of studies on the diverse effects of nanoparticles on various systems have been published. This review provides an overview of the mechanisms of cellular uptake of nanoparticles (NPs) and the advanced toxicological studies of the nanoparticles of metals and metal oxides on various systems (in-vitro and in-vivo).","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41394176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Amino Acid Functionalization of Multi-Walled Carbon Nanotubes for Enhanced Apatite Formation and Biocompatibility","authors":"A. haroun, Z. Gospodinova, N. Krasteva","doi":"10.5101/nbe.v13i4.p380-393","DOIUrl":"https://doi.org/10.5101/nbe.v13i4.p380-393","url":null,"abstract":"The limitation in bone tissue engineering is the lack of available natural or synthetic biomaterials to replace bone tissue under need. Carbon nanotubes have great potential as bone tissue scaffolds because of their remarkable mechanical and electrical properties combined with high aspect ratio. In this work, we demonstrated for the first time a novel approach based on the sol-gel technique for functionalization of multi-walled carbon nanotubes (MWCNTs) with two amino acids: L-arginine, L(+) Arg and L-aspargine, L(+) Asp. We have examined the effect of both functionalities on physicochemical properties of MWCNTs, cytotoxicity in osteosarcoma MG63 and normal fibroblastic BJ cells and the ability to induce nucleation and growth of hydroxyapatite (HA) crystals in vitro under physiological concentrations of Ca and PO (SBF). The scaffolds were characterized using Fourier transform infrared spectroscopy (FTIR-ATR), dynamic light scattering technique (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The results showed that both functionalized MWCNTs have a particle size of 269 and 411 nm, a zeta potential of –12.8 and –8.8 mV, respectively, high colloidal stability, enhanced biocompatibility, and enhanced formation of an apatite layer on the scaffolds surface in comparison to ox-MWCNTs. Altogether, the results confirmed the important role of the amino acids L(+) Arg and L(+) Asp in oxMWCNTs-based composites for bone tissue engineering applications.","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":"41 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41286726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bactericidal Potency of Green Synthesized Silver Nanoparticles against Waterborne Escherichia coli Isolates","authors":"Dalal M. Ridha, H. M. Al-Rafyai, Noor S. Najii","doi":"10.5101/nbe.v13i4.p372-379","DOIUrl":"https://doi.org/10.5101/nbe.v13i4.p372-379","url":null,"abstract":"In recent years, silver nanoparticles (Ag NPs) had produced by biological methods such as plant extract due to their efficiency, low cost, being non-toxic, and ecofriendly nature. Ag NPs have antibacterial, anti-mold, and anti-fungi because of their high surface area to volume ratio. In this study, Opuntia ficus-indica (Prickly pear) extract was used to produce green synthesized Ag NPs. Different techniques had adopted to describe the generated nanoparticles, such as an ultraviolet spectrophotometer, Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), and Zeta Potential Analysis. Escherichia coli (E. coli), separated from sediment and water of the Hillah River in Babylon city in Iraq, was utilizedto estimate the antibacterial activities of Ag NPs at different concentrations. Both broth microdilution assay and well diffusion assay were applied. The Congo Red Agar implied to investigate the ability of E. coli isolates to form a biofilm. The TEM images of Ag NPs illustrated spherical morphology with a diameter of approximately 22±4 nm. The antibacterial activity tests showed that the Minimum Inhibitory Concentration (MIC) ranged from 0.0125 mg·L to 0.05 mg·L, whereas Minimum Bactericidal Concentration (MBC) was from 0.025 mg·L to 0.05 mg·L. 5 h ofexposure to the 0.025 mg·L concentrations of the Ag NPs had a bactericidal impact on 92% of the E. coli isolates. In our study, we found silver nanoparticles synthesized by Opuntia ficus-Indica have antibacterial activity against waterborne Escherichia coli isolates and it could be utilizedtoreduce microbial growth in contaminated water.","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47988032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. S. Abbas, A. H. Ismail, H. Al-Bairmani, A. Rheima, Ameera Sultan, S. Mohammed
{"title":"Inhibition Effect of Copper (II) Theophylline Nanocomplex on Phosphodiesterase (PDE) Enzyme Activity in Human Serum of Iraqi Patients with Asthma Disease","authors":"Z. S. Abbas, A. H. Ismail, H. Al-Bairmani, A. Rheima, Ameera Sultan, S. Mohammed","doi":"10.5101/nbe.v13i4.p364-371","DOIUrl":"https://doi.org/10.5101/nbe.v13i4.p364-371","url":null,"abstract":"Copper (II) theophylline [Cu(THP)2(H2O)4] complex in nanoscale has synthesized by ultrasonic sonication method. This method was used in the development of smaller, dispersed, and unaggregated nanoparticles (NPs). The structure of nanocomplex was described and suggested by the molar conductance, Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UVVis), solubility, atomic fire absorption, and C.H.N. elemental analysis as octahedral geometry. The size and morphology of nanocomplex measured by transmission electron microscopy (TEM) were 20 nm. The nanocomplex was studied on phosphodiesterase enzyme activity in human serum of Iraqi patient›s asthma disease. The results showed a highly significant (p < 0.01) increase in the serum levels of phosphodiesterase enzyme activity in asthma patients (mean = 14.939 ± 3.021 ng/mL) compared with a control group (mean = 9.974 ± 2.032 ng/mL). The result also showed a highly significant (p < 0.01) decrease in the serum levels of phosphodiesterase activity in patients of asthma disease with theophylline (mean = 11.253 ± 2.479 ng/mL) compared to serum patients without nano and control groups. It is vital that the result showed a highly significant (p < 0.01) decrease in the serum levels of phosphodiesterase activity in patients of asthma disease with copper nano complex (mean = 9.563 ± 2.082 ng/mL) compared in patients of asthma disease with and without theophylline. As for comparing asthma disease with copper nano complex and control group, the result showed there was no significant effect (p > 0.05).","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43211536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Effects of Metal Nanoparticles on the Mammalian Reproductive System","authors":"Parvin Lohrasbi, S. Bahmanpour","doi":"10.5101/nbe.v13i4.p344-363","DOIUrl":"https://doi.org/10.5101/nbe.v13i4.p344-363","url":null,"abstract":"Due to the increasing use of nanoparticles in medical and industrial fields, concerns are growing about the toxicity of them to the body organs especially the reproductive system. In this review, the effect of metal/metal oxide nanoparticles on the mammalian reproductive system was discussed. Nanoparticles are typically toxic to both males and females, depending on their types, administration method, exposure duration, and surface modification. Regarding the embryo, it was also found that the effect of nanoparticles depends on the embryonic stage exposure during development. However, some nanoparticles, depending on the dose and time of administration, not only did not have toxic effects, but also strengthened the reproductive system and increased its efficiency. As the mode of interaction, penetration, and mechanism of nanoparticles action in the reproductive system is unclear, this review highlights the importance of additional tests in these cases.","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70946037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-Folding Non-Invasive Miniature Robots: Progress and Trend in the Biomedical Field","authors":"Vienna Parnell","doi":"10.5101/nbe.v13i4.p329-343","DOIUrl":"https://doi.org/10.5101/nbe.v13i4.p329-343","url":null,"abstract":"Developments in surgery have been geared toward minimizing the invasiveness of the procedure to improve both the treatment itself and the patient’s postoperative wellbeing. As such, attention has been directed toward reducing human error and miniaturizing clinical devices by developing smaller devices and robotic systems. While there have already been significant advancements in this area, apparatus can further benefit from being foldable, expandable, and further condensable. By promoting these characteristics, origami engineering, which extrapolates the fundamental principles of paper folding to real-world projects, has become increasingly prevalent in the biomedical field. This paper reviews the field of origami engineering, its fundamental mechanical and mathematical properties, and the recent progress in specific research areas. Then, this paper discusses several devices that have emerged over the past decade in detail based on their characteristics and implementations. Finally, this paper addresses the technical challenges and general research trend of selffolding non-invasive miniature robots.","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41868774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bushra Habeeb Al-Maula, Z. Wally, R. Dosh, Abtesam Aljdaimi, Suhad Jabbar Hamed Al-Nasrawie, J. Haider
{"title":"Assessing the Effects of Administering Calcium Oxide Nanoparticles on Oral Mucosa and Tongue of Male Wister Rats","authors":"Bushra Habeeb Al-Maula, Z. Wally, R. Dosh, Abtesam Aljdaimi, Suhad Jabbar Hamed Al-Nasrawie, J. Haider","doi":"10.5101/nbe.v13i3.p311-320","DOIUrl":"https://doi.org/10.5101/nbe.v13i3.p311-320","url":null,"abstract":"The present study was conducted to evaluate the impact of calcium oxide-nanoparticles (CaO-NPs) administration at different concentrations on the epithelial thickness, papilla length and number of blood vessels of male Wister rats’ buccal mucosa, and the epithelial thickness, filiform length and number of blood vessels of the rats’ tongue. Twelve rats were used and randomly allocated into four groups: control group (untreated) and the three experimental groups were orally treated with CaO-NPs at different doses 25, 50 and 100 mg/kg of the body weight over two months. On the 61st day, all the animals were sacrificed, and 1 cm of the buccal mucosa and the body of the tongue were carefully removed for histological analysis. Histological tissues were studied under a light microscope to investigate the impact of CaO-NPs administration on the oral tissues. An image processing software (Image J) was used to measure the epithelial thickness, papilla length and number of blood vessels of the rats’ buccal mucosa, and the epithelial thickness, filiform length and number of blood vessels of the rats’ tongue. The results showed that the CaO nanoparticles administration caused epithelial atrophy and decreased vascularization of buccal and tongue mucosa with all tested doses of CaO-NPs and the 100 mg/kg concentration showed the most significant effect.","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41666027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. G. Auda, I. Salman, Dalal Abed Al-Sattar, Jameelah Ghadban Oduha
{"title":"In-vivo and In-vitro Anti-Acinetobacter baumannii Activity of Citrate-Capped Silver Nanoparticles","authors":"I. G. Auda, I. Salman, Dalal Abed Al-Sattar, Jameelah Ghadban Oduha","doi":"10.5101/nbe.v13i3.p229-239","DOIUrl":"https://doi.org/10.5101/nbe.v13i3.p229-239","url":null,"abstract":"Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities. Capping agents are used for exhibiting a better antibacterial activity than uncapped Ag NPs. There are very few reports that have shown the usage of AgNPs for in-vivo antibacterial therapy. Citrate-capped silver nanoparticles were synthesized chemically by citrate reduction method; the size of Cit-AgNPs was determined by an atomic force microscope (AFM) and was between 15 90 nm. Acinetobacter baumannii (A. baumannii) isolates were the only sensitive species to CitAgNPs. MICs and MBC of Cit-AgNPs were determined by using A. baumannii. The results showed an additive effect of Cit-AgNPs. Four mice groups were infected with a sub-lethal dose of A. baumannii intraperitoneally, IP. The single daily dose of Cit-AgNPs and imipenem plus Cit-AgNPs combination were administered IP. Imipenem and phosphate buffer saline (PBS) was used as positive control and negative control, respectively. Interestingly, only the PBS-treated group showed growth of A. baumannii in the liver and spleen of sacrificed mice. Histopathologically, Cit-AgNPs showed antibacterial activity and had an additive effect when combined with imipenem in vivo and in vitro. Moreover, the Cit-AgNPs showed dose-dependent activity and the organs differed in the illumination of the toxicity effect of Cit-AgNPs even after high dose administration. In conclusion, Cit-capped AgNPs had antibacterial activity against multiple drug resistant (MDR) A. baumannii but not against K. pneumoniae and E. coli. Cit-capped AgNPs increased the inhibition zone of imipenem in additive effect; the minimum inhibitory concentration and the minimum bactericidal concentration of Citcapped AgNPs were relatively low. Cit-capped AgNPs eliminated A. baumannii infection in vivo when it was given alone or in combination with imipenem. The cytotoxicity of Cit-AgNPs was dosedependent and the organs differed in the illumination of the inflammatory effect of Cit-AgNPs after high dose administration. It is not recommended to use Cit-capped AgNPs systemically despite their valuable additive antibacterial effect especially with a high dose and the combination with imipenem, Topical administration needs to be evaluated.","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44504416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cuili Xue, Amin Zhang, Yunsheng Chen, Hui Liang, Jing Tian, Jingpu Zhang, Cheng Zhou, Jian Ni, Han Jin, D. Cui
{"title":"Development of Exhaled Breath Diagnosis Sensors for Rapid Identification of COVID-19 Patients","authors":"Cuili Xue, Amin Zhang, Yunsheng Chen, Hui Liang, Jing Tian, Jingpu Zhang, Cheng Zhou, Jian Ni, Han Jin, D. Cui","doi":"10.5101/nbe.v13i3.p225-228","DOIUrl":"https://doi.org/10.5101/nbe.v13i3.p225-228","url":null,"abstract":"The novel coronavirus pneumonia, a global pandemic disease named as coronavirus disease 2019, has caused enormous losses on the health and economies of people all over the world, while there is still a lack of quick and sensitive diagnostic method and effective therapy. Developing rapid diagnostic method for coronavirus disease 2019 has become exceptional urgent. Herein we report a rapid diagnostic method for the novel coronavirus through monitoring the volatile biomarkers in human exhaled breath. The breath volatile biomarkers are derived from the metabolism of novel coronavirus, including acetoin, 2,4,6-trimethylpyridine, 3-methyl tridecane, tetradecane, isooctyl alcohol, pentadecane, hexadecane, 1-methylene-1H-indene. By comparing the types and concentrations of the volatile biomarkers in human exhaled breath combined with SERS sensor, we could distinguish between the healthy person and the patients with coronavirus disease 2019. This work confirms that various volatile organic compounds metabolized by novel coronavirus can be employed for rapidly screening of patients with coronavirus disease 2019, and has broad application prospects in the prevention and control of the epidemic.","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41461190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}