{"title":"TiO<sub>2</sub> nanostructures - a double edged sword: current progress on their role in stem cells' differentiation, cancer therapy, and their toxicity issues.","authors":"Saravanan Ramesh, Kavitha Govarthanan, Arunkumar Palaniappan","doi":"10.1080/17435390.2023.2199858","DOIUrl":"https://doi.org/10.1080/17435390.2023.2199858","url":null,"abstract":"<p><p>Titanium dioxide (TiO<sub>2</sub>)-based nanostructures have wide applications in cosmetics, toothpastes, pharmaceuticals, coatings, papers, inks, plastics, food products, textiles, and many others. Recently, they have also been found to have huge potential as stem cells' differentiation agents as well as stimuli-responsive drug delivery systems in cancer therapy. In this review, we present some of the recent progress in the role of TiO<sub>2</sub>-based nanostructures toward the above-mentioned applications. We also present recent studies on the toxicity issues of these nanomaterials and the mechanisms behind the toxicity issues. We have reviewed the recent progress of TiO<sub>2</sub>-based nanostructures on their stem cells' differentiation potentials, their photo- and sono-dynamic capabilities, as stimuli-responsive drug delivery systems, and finally their toxicity issues with mechanistic understanding on the same. We believe that this review will help researchers be aware of the latest progress in the applications as well as few toxicity issues associated with TiO<sub>2</sub>-based nanostructures, which will help them design better nanomedicine for future applications.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"17 2","pages":"176-201"},"PeriodicalIF":5.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9462079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotoxicologyPub Date : 2023-02-01DOI: 10.1080/17435390.2023.2183653
Javier Frontiñan-Rubio, Sonia García-Carpintero, Viviana Jehová González, Ester Vázquez, Mario Durán-Prado
{"title":"Assessment of genotoxicity induced by subchronic exposure to graphene in HaCaT human skin cell line.","authors":"Javier Frontiñan-Rubio, Sonia García-Carpintero, Viviana Jehová González, Ester Vázquez, Mario Durán-Prado","doi":"10.1080/17435390.2023.2183653","DOIUrl":"https://doi.org/10.1080/17435390.2023.2183653","url":null,"abstract":"<p><p>The applications of graphene-based materials (GBMs) and their processing involve prolonged contact with cellular barriers such as human skin. Even though the potential cytotoxicity of graphene has been studied in recent years, the impact of long-term graphene exposure has rarely been explored. We tested in the HaCaT epithelial cells, <i>in vitro</i>, the effect of subchronic treatments with sublethal doses of four different, well-characterized GBMs, two commercial graphene oxides (GO) and two few-layer graphenes (FLG). Cells were exposed weekly to low doses of the GBMs for 14 days, 30 days, 3 months, and 6 months. GBMs-cells uptake was assessed by confocal microscopy. Cell death and cell cycle were determined by fluorescence microscopy and cytometry. DNA damage was measured by comet assay and γ-H2AX staining, followed by the determination of p-p53 and p-ATR by immunolabeling. Subchronic exposure to different GBMs at noncytotoxic doses has potential genotoxic effects on HaCaT epithelial cells that can be recovered depending on the GBM and exposure time. Specifically, GO-induced genotoxicity can be detected after 14 and 30 days from treatment. At this time, FLG appears less genotoxic than GO, and cells can recover more quickly when genotoxic pressure disappears after some days of removal of the GBM. Long-term exposure, 3 and 6 months, to different GBMs induces permanent, nonreversible, genotoxic damage comparable to the exerted by arsenite. This should be considered for the production and future applications of GBMs in scenarios where low concentrations of the material interact chronically with epithelial barriers.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"17 1","pages":"42-61"},"PeriodicalIF":5.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9377899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotoxicologyPub Date : 2023-02-01Epub Date: 2023-03-15DOI: 10.1080/17435390.2023.2187322
Yoo-Seok Hwang, Daeho So, Moonsup Lee, Jaeho Yoon, Vytas Reipa, Alessandro Tona, Feng Yi, Bryant C Nelson, David A LaVan, Vincent A Hackley, Ira O Daar, Tae Joon Cho
{"title":"Polyethyleneimine/polyethylene glycol-conjugated gold nanoparticles as nanoscale positive/negative controls in nanotoxicology: testing in frog embryo teratogenesis assay-<i>Xenopus</i> and mammalian tissue culture system.","authors":"Yoo-Seok Hwang, Daeho So, Moonsup Lee, Jaeho Yoon, Vytas Reipa, Alessandro Tona, Feng Yi, Bryant C Nelson, David A LaVan, Vincent A Hackley, Ira O Daar, Tae Joon Cho","doi":"10.1080/17435390.2023.2187322","DOIUrl":"10.1080/17435390.2023.2187322","url":null,"abstract":"<p><p>Despite the great potential of using positively charged gold nanoparticles (AuNPs) in nanomedicine, no systematic studies have been reported on their synthesis optimization or colloidal stability under physiological conditions until a group at the National Institute of Standards and Technology recently succeeded in producing remarkably stable polyethyleneimine (PEI)-coated AuNPs (Au-PEI). This improved version of Au-PEI (Au-PEI25kB) has increased the demand for toxicity and teratogenicity information for applications in nanomedicine and nanotoxicology. In vitro assays for Au-PEI25kB in various cell lines showed substantial active cytotoxicity. For advanced toxicity research, the frog embryo teratogenesis assay-<i>Xenopus</i> (FETAX) method was employed in this study. We observed that positively-charged Au-PEI25kB exhibited significant toxicity and teratogenicity, whereas polyethylene glycol conjugated AuNPs (Au-PEG) used as comparable negative controls did not. There is a characteristic avidity of Au-PEI25kB for the jelly coat, the chorionic envelope (also known as vitelline membrane) and the cytoplasmic membrane, as well as a barrier effect of the chorionic envelope observed with Au-PEG. To circumvent these characteristics, an injection-mediated FETAX approach was utilized. Like treatment with the FETAX method, the injection of Au-PEI25kB severely impaired embryo development. Notably, the survival/concentration curve that was steep when the standard FETAX approach was employed became gradual in the injection-mediated FETAX. These results suggest that Au-PEI25kB may be a good candidate as a nanoscale positive control material for nanoparticle analysis in toxicology and teratology.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"17 1","pages":"94-115"},"PeriodicalIF":5.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471858/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10495639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predicting the toxicity of nanoparticles using artificial intelligence tools: a systematic review.","authors":"Alireza Banaye Yazdipour, Hoorie Masoorian, Mahnaz Ahmadi, Niloofar Mohammadzadeh, Seyed Mohammad Ayyoubzadeh","doi":"10.1080/17435390.2023.2186279","DOIUrl":"https://doi.org/10.1080/17435390.2023.2186279","url":null,"abstract":"<p><p>Nanoparticles have been used extensively in different scientific fields. Due to the possible destructive effects of nanoparticles on the environment or the biological systems, their toxicity evaluation is a crucial phase for studying nanomaterial safety. In the meantime, experimental approaches for toxicity assessment of various nanoparticles are expensive and time-consuming. Thus, an alternative technique, such as artificial intelligence (AI), could be valuable for predicting nanoparticle toxicity. Therefore, in this review, the AI tools were investigated for the toxicity assessment of nanomaterials. To this end, a systematic search was performed on PubMed, Web of Science, and Scopus databases. Articles were included or excluded based on pre-defined inclusion and exclusion criteria, and duplicate studies were excluded. Finally, twenty-six studies were included. The majority of the studies were conducted on metal oxide and metallic nanoparticles. In addition, Random Forest (RF) and Support Vector Machine (SVM) had the most frequency in the included studies. Most of the models demonstrated acceptable performance. Overall, AI could provide a robust, fast, and low-cost tool for the evaluation of nanoparticle toxicity.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"17 1","pages":"62-77"},"PeriodicalIF":5.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9320659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A harmonized protocol for an international multicenter prospective study of nanotechnology workers: the NanoExplore cohort.","authors":"Irina Guseva Canu, Ekaterina Plys, Camille Velarde Crézé, Carlos Fito, Nancy B Hopf, Athena Progiou, Chiara Riganti, Jean-Jacques Sauvain, Giulia Squillacioti, Guillaume Suarez, Pascal Wild, Enrico Bergamaschi","doi":"10.1080/17435390.2023.2180220","DOIUrl":"https://doi.org/10.1080/17435390.2023.2180220","url":null,"abstract":"<p><p>Nanotechnology applications are fast-growing in many industrial fields. Consequently, health effects of engineered nanomaterials (ENMs) should be investigated. Within the EU-Life project NanoExplore, we developed a harmonized protocol of an international multicenter prospective cohort study of workers in ENM-producing companies. This article describes the development of the protocol, sample size calculation, data collection and management procedures and discusses its relevance with respect to research needs. Within this protocol, workers' ENM exposure will be assessed over four consecutive working days during the initial recruitment campaign and the subsequent follow-up campaigns. Biomonitoring using noninvasive sampling of exhaled breath condensate (EBC), exhaled air, and urine will be collected before and after 4-day exposure monitoring. Both exposure and effect biomarkers, will be quantified along with pulmonary function tests and diagnosed diseases reported using a standardized epidemiological questionnaire available in four languages. Until now, this protocol was implemented at seven companies in Switzerland, Spain and Italy. The protocol is well standardized, though sufficiently flexible to include company-specific conditions and occupational hygiene measures. The recruitment, to date, of 140 participants and collection of all data and samples, enabled us launching the first international cohort of nanotechnology workers. All companies dealing with ENMs could join the NanoExplore Consortium, apply this harmonized protocol and enter in the cohort, concieved as an open cohort. Its protocol meets all requirements of a hypotheses-driven prospective study, which will assess and reassess effects of ENM exposure on workers' health by updating the follow-up of the cohort. New hypothesis could be also considered.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"17 1","pages":"1-19"},"PeriodicalIF":5.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9322281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotoxicologyPub Date : 2023-02-01DOI: 10.1080/17435390.2023.2186280
Arkaprava Banerjee, Supratik Kar, Souvik Pore, Kunal Roy
{"title":"Efficient predictions of cytotoxicity of TiO<sub>2</sub>-based multi-component nanoparticles using a machine learning-based q-RASAR approach.","authors":"Arkaprava Banerjee, Supratik Kar, Souvik Pore, Kunal Roy","doi":"10.1080/17435390.2023.2186280","DOIUrl":"https://doi.org/10.1080/17435390.2023.2186280","url":null,"abstract":"<p><p>The availability of experimental nanotoxicity data is in general limited which warrants both the use of <i>in silico</i> methods for data gap filling and exploring novel methods for effective modeling. Read-Across Structure-Activity Relationship (RASAR) is an emerging cheminformatic approach that combines the usefulness of a QSAR model and similarity-based Read-Across predictions. In this work, we have generated simple, interpretable, and transferable quantitative-RASAR (q-RASAR) models which can efficiently predict the cytotoxicity of TiO<sub>2</sub>-based multi-component nanoparticles. A data set of 29 TiO<sub>2</sub>-based nanoparticles with specific amounts of noble metal precursors was rationally divided into training and test sets, and the Read-Across-based predictions for the test set were generated. The optimized hyperparameters and the similarity approach, which yield the best predictions, were used to calculate the similarity and error-based RASAR descriptors. A data fusion of the RASAR descriptors with the chemical descriptors was done followed by the best subset feature selection. The final set of selected descriptors was used to develop the q-RASAR models, which were validated using the stringent OECD criteria. Finally, a random forest model was also developed with the selected descriptors, which could efficiently predict the cytotoxicity of TiO<sub>2</sub>-based multi-component nanoparticles superseding previously reported models in the prediction quality thus showing the merits of the q-RASAR approach. To further evaluate the usefulness of the approach, we have applied the q-RASAR approach also to a second cytotoxicity data set of 34 heterogeneous TiO<sub>2</sub>-based nanoparticles which further confirmed the enhancement of external prediction quality of QSAR models after incorporation of RASAR descriptors.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"17 1","pages":"78-93"},"PeriodicalIF":5.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9377366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotoxicologyPub Date : 2023-02-01DOI: 10.1080/17435390.2023.2180451
Lidija Izrael Živković, Nico Hüttmann, Vanessa Susevski, Ana Medić, Vladimir Beškoski, Maxim V Berezovski, Zoran Minić, Ljiljana Živković, Ivanka Karadžić
{"title":"A comprehensive proteomics analysis of the response of <i>Pseudomonas aeruginosa</i> to nanoceria cytotoxicity.","authors":"Lidija Izrael Živković, Nico Hüttmann, Vanessa Susevski, Ana Medić, Vladimir Beškoski, Maxim V Berezovski, Zoran Minić, Ljiljana Živković, Ivanka Karadžić","doi":"10.1080/17435390.2023.2180451","DOIUrl":"https://doi.org/10.1080/17435390.2023.2180451","url":null,"abstract":"<p><p>The increased commercial use and spread of nanoceria raises concerns about the risks associated with its effects on living organisms. Although <i>Pseudomonas aeruginosa</i> may be ubiquitous in nature, it is largely found in locations closely linked with human activity. <i>P. aeruginosa</i> san ai was used as a model organism for a deeper understanding of the interaction between biomolecules of the bacteria with this intriguing nanomaterial. A comprehensive proteomics approach along with analysis of altered respiration and production of targeted/specific secondary metabolites was conducted to study the response of <i>P. aeruginosa</i> san ai to nanoceria. Quantitative proteomics found that proteins associated with redox homeostasis, biosynthesis of amino acids, and lipid catabolism were upregulated. Proteins from outer cellular structures were downregulated, including transporters responsible for peptides, sugars, amino acids and polyamines, and the crucial TolB protein of the Tol-Pal system, required for the structural formation of the outer membrane layer. In accordance with the altered redox homeostasis proteins, an increased amount of pyocyanin, a key redox shuttle, and the upregulation of the siderophore, pyoverdine, responsible for iron homeostasis, were found. Production of extracellular molecules, e.g. pyocyanin, pyoverdine, exopolysaccharides, lipase, and alkaline protease, was significantly increased in <i>P. aeruginosa</i> san ai exposed to nanoceria. Overall, nanoceria at sublethal concentrations induces profound metabolic changes in <i>P. aeruginosa</i> san ai and provokes increased secretion of extracellular virulence factors, revealing the powerful influence this nanomaterial has on the vital functions of the microorganism.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"17 1","pages":"20-41"},"PeriodicalIF":5.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9321250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotoxicologyPub Date : 2023-02-01DOI: 10.1080/17435390.2023.2191717
Kevin L Trout, Sanghamitra Majumdar, Anil K Patri, Tariq Fahmi
{"title":"Radiation impacts on toxicity of cobalt-chromium (CoCr) implant debris.","authors":"Kevin L Trout, Sanghamitra Majumdar, Anil K Patri, Tariq Fahmi","doi":"10.1080/17435390.2023.2191717","DOIUrl":"https://doi.org/10.1080/17435390.2023.2191717","url":null,"abstract":"<p><p>Particulate and soluble debris are generated by mechanical and non-mechanical degradation of implanted medical devices. Debris containing cobalt and chromium (CoCr) is known to cause adverse biological reactions. Implant-related complications are often diagnosed using radiography, which results in more frequent patient exposure to ionizing radiation. The aim of this study was to evaluate the potential for increased toxicity due to combined radiation and CoCr exposure. This was investigated using a controlled <i>in vitro</i> model consisting of commercially available CoCr debris that was generated from components of hip replacements and human cell lines relevant to the joint environment: endothelial HMEC-1 and synovial SW982. Particle sizes and shapes were heterogenous. Cells tended to internalize smaller particles, as observed by electron microscopy. Indicators of toxicity were measured after short (24 h after radiation) or extended (12-14 d after radiation) exposure timelines. In the short-term, CoCr reduced cell viability, increased apoptosis, and increased oxidative stress. The effects of radiation were not apparent until the timeline was extended. CoCr and radiation reduced cell survival, with both additive and synergistic effects. Mechanisms for reduced survival included rapid cell death caused by CoCr and senescence caused by radiation. In conclusion, results showed combined toxicological effects of CoCr and radiation at the doses and timelines used for this <i>in vitro</i> model. These observations warrant further investigation using other experimental models to determine translational impact.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"17 1","pages":"116-142"},"PeriodicalIF":5.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9378913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotoxicologyPub Date : 2022-11-01DOI: 10.1080/17435390.2023.2170836
Yujing Du, Zhipei Chen, M Irfan Hussain, Ping Yan, Chunli Zhang, Yan Fan, Lei Kang, Rongfu Wang, Jianhua Zhang, Xiaona Ren, Changchun Ge
{"title":"Evaluation of cytotoxicity and biodistribution of mesoporous carbon nanotubes (pristine/-OH/-COOH) to HepG2 cells <i>in vitro</i> and healthy mice <i>in vivo</i>.","authors":"Yujing Du, Zhipei Chen, M Irfan Hussain, Ping Yan, Chunli Zhang, Yan Fan, Lei Kang, Rongfu Wang, Jianhua Zhang, Xiaona Ren, Changchun Ge","doi":"10.1080/17435390.2023.2170836","DOIUrl":"https://doi.org/10.1080/17435390.2023.2170836","url":null,"abstract":"<p><p>Mesoporous carbon nanotubes (mCNTs) hold great promise interests, owing to their superior nano-platform properties for biomedicine. To fully utilize this potential, the toxicity and biodistribution of pristine and surface-modified mCNTs (-OH/-COOH) should preferentially be addressed. The results of cell viability suggested that pristine mCNTs induced cell death in a concentration-dependent manner. As evidence of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD), pristine mCNTs induced noticeable redox imbalance. <sup>99m</sup>Tc tracing data suggested that the cellular uptake of pristine mCNTs posed a concentrate-dependent and energy-dependent manner <i>via</i> macropinocytotic and clathrin-dependent pathways, and the main accumulated organs were lung, liver and spleen. With OH modification, the ROS generation, MDA deposition and SOD consumption were evidently reduced compared with the pristine mCNTs at 24/48 h high-dose exposure. With COOH modification, the modified mCNTs only showed a significant difference in SOD consumption at 24/48 h exposure, but there was no significant difference in the measurement of ROS and MDA. The internalization mechanism and organ distribution of modified mCNTs were basically invariant. Together, our study provides evidence that mCNTs and the modified mCNTs all could induce oxidative damage and thereby impair cells. <sup>99m</sup>Tc-mCNTs can effectively trace the distribution of nanotubes <i>in vivo</i>.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"16 9-10","pages":"895-912"},"PeriodicalIF":5.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9094939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotoxicologyPub Date : 2022-11-01Epub Date: 2023-01-18DOI: 10.1080/17435390.2022.2146047
{"title":"Correction.","authors":"","doi":"10.1080/17435390.2022.2146047","DOIUrl":"10.1080/17435390.2022.2146047","url":null,"abstract":"2) Figure 8 caption was incorrect. The correct caption is as follows: Figure 8. Inflammatory IL-1b, TNF-a (A,B) and anti-inflammatory IL-10 (C) levels were measured in serum samples of each animal in all groups. Data are presented as mean value ± standard deviation. , symbolizes the significant differences between the groups mentioned above and the naïve group. #, symbolizes the significant differences between the groups mentioned above and the naïveþHepB group.","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"16 9-10","pages":"955"},"PeriodicalIF":5.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10773649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}