{"title":"Fire propagation visualization in real time","authors":"M. Denham, Sigfrido Waidelich, K. Laneri","doi":"10.24215/16666038.18.E27","DOIUrl":"https://doi.org/10.24215/16666038.18.E27","url":null,"abstract":"Our motivation comes from the need of a tailored computational tool for simulation and prediction of forest fire propagation, to be used by firefighters in Patagonia, Argentina. Based on previous works on Graphic Processing Units (GPU) for fitting and simulating fires in our region, we developed a visualization interface for real time computing, simulation and prediction of fire propagation. We have the possibility of changing the ensemble of raster maps layers to change the region in which fire will propagate.The visualization platform runs on GPUs and the user can rotate and zoom the landscape to select the optimal view of fire propagation. Opacity of different layers can be regulated by the user, allowing to see fire propagation at the same time that underlying vegetation, wind direction and intensity. The ignition point can also be selected by the user, and firebreaks can be plotted while simulation is going on.After the performance of a high number of stochastic simulations in parallel in GPUs, the application shows a map of the final fire surface colored according to the probability that a given cell burns. In this way the user can visually identify the most critical direction for fire propagation, a useful information to stop fire optimizing resources, which is specially important when they are scarce like is the case of our Patagonia region.","PeriodicalId":188846,"journal":{"name":"J. Comput. Sci. Technol.","volume":"21 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128569423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Caballero, L. Zarzalejo, Á. Otero, L. Piñuel, S. Wilbert
{"title":"Short term cloud nowcasting for a solar power plant based on irradiance historical data","authors":"R. Caballero, L. Zarzalejo, Á. Otero, L. Piñuel, S. Wilbert","doi":"10.24215/16666038.18.E21","DOIUrl":"https://doi.org/10.24215/16666038.18.E21","url":null,"abstract":"This work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour. Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series.","PeriodicalId":188846,"journal":{"name":"J. Comput. Sci. Technol.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129764166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Processing Collections of Geo-Referenced Images for Natural Disasters","authors":"Fernando Loor, V. Gil-Costa, Mauricio Marín","doi":"10.24215/16666038.18.E22","DOIUrl":"https://doi.org/10.24215/16666038.18.E22","url":null,"abstract":"After disaster strikes, emergency response teams need to work fast. In this context, crowdsourcing has emerged as a powerful mechanism where volunteers can help to process different tasks such as processing complex images using labeling and classification techniques. In this work we propose to address the problem of how to efficiently process large volumes of georeferenced images using crowdsourcing in the context of high risk such as natural disasters. Research on citizen science and crowdsourcing indicates that volunteers should be able to contribute in a useful way with a limited time to a project, supported by the results of usability studies. We present the design of a platform for real-time processing of georeferenced images. In particular, we focus on the interaction between the crowdsourcing and the volunteers connected to a P2P network.","PeriodicalId":188846,"journal":{"name":"J. Comput. Sci. Technol.","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127345031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cloud Computing, Big Data and the Industry 4.0 Reference Architectures","authors":"N. Velásquez, Elsa Estevez, Patricia Pesado","doi":"10.24215/16666038.18.E29","DOIUrl":"https://doi.org/10.24215/16666038.18.E29","url":null,"abstract":"The Industry 4.0 promotes the use of Information and Communication Technologies (ICT) in manufacturing processes to obtain customized products satisfying demanding needs of new consumers. The Industry 4.0 approach transforms the traditional pyramid model of automation to a network model of interconnected services, combining operational technology (OT) with Information Technology (IT). This new model allows the creation of ecosystems enabling more flexible production processes through connecting systems and sharing data. In this context, cloud computing and big data are critical technologies for leveraging the approach. Thus, this paper analyzes cloud computing and big data under the lenses of two leading reference architectures for implementing Industry 4.0: 1) the Industrial Internet Reference Architecture (IIRA), and 2) the Reference Architecture Model Industrie 4.0 (RAMI 4.0). A main contribution of this paper is to present a comparative analysis of IIRA and RAMI 4.0, discussing needs, benefits, and challenges of applying cloud computing and big data in the Industry 4.0.","PeriodicalId":188846,"journal":{"name":"J. Comput. Sci. Technol.","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117082728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interactions in Visualization","authors":"M. L. Ganuza","doi":"10.24215/16666038.18.e20","DOIUrl":"https://doi.org/10.24215/16666038.18.e20","url":null,"abstract":"Resumen de la Tesis de Doctorado presentada por la autora el 16 de marzo de 2018 en la UNS para la obtencion del titulo de Doctor en Ciencias de la Computacion","PeriodicalId":188846,"journal":{"name":"J. Comput. Sci. Technol.","volume":"209 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117102041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonio Castro Lechtaler, Marcelo Cipriano, Edith García, Pablo Lázaro, J. Liporace, E. Malvacio, Ariel Maiorano
{"title":"Other potential problems in Qlink.it","authors":"Antonio Castro Lechtaler, Marcelo Cipriano, Edith García, Pablo Lázaro, J. Liporace, E. Malvacio, Ariel Maiorano","doi":"10.24215/16666038.18.E18","DOIUrl":"https://doi.org/10.24215/16666038.18.E18","url":null,"abstract":"In previous work we presented preliminary results obtained by reviewing the source code of Qlink.it web application. In this article, after summarizing previous findings, results of the source code review of Qlink.it Android application will be described. This analysis focused on the implementation of cryptographic functionalities. The aim of this publication is also to invite other researchers to analyze the application in order to determine if Qlink.it could be considered secure.","PeriodicalId":188846,"journal":{"name":"J. Comput. Sci. Technol.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127949724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identifying Key Success Factors in Stopping Flaky Tests in Automated REST Service Testing","authors":"M. A. Mascheroni, E. Irrazábal","doi":"10.24215/16666038.18.E16","DOIUrl":"https://doi.org/10.24215/16666038.18.E16","url":null,"abstract":"A flaky test is a test which could fail or pass for the same version of a certain software code. In continuous software development environments, flaky tests represent a problem. It is difficult to get an effective and reliable testing pipeline with a set of flaky tests. Also, according to many practitioners, despite the persistence of flaky tests in software development, they have not drawn much attention from the research community. In this paper, we describe how a company faced this issue, and implemented solutions to solve flaky tests for REST web services. The paper concludes proposing a set of key success factors for stopping flaky tests in this type of testing.","PeriodicalId":188846,"journal":{"name":"J. Comput. Sci. Technol.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124647719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Are GPUs Non-Green Computing Devices?","authors":"M. P. Puig, Laura C. De Giusti, M. Naiouf","doi":"10.24215/16666038.18.E17","DOIUrl":"https://doi.org/10.24215/16666038.18.E17","url":null,"abstract":"With energy consumption emerging as one of the biggest issues in the development of HPC (High Performance Computing) applications, the importance of detailed power-related research works becomes a priority. In the last years, GPU coprocessors have been increasingly used to accelerate many of these high-priced systems even though they are embedding millions of transistors on their chips delivering an immediate increase on power consumption necessities. This paper analyzes a set of applications from the Rodinia benchmark suite in terms of CPU and GPU performance and energy consumption. Specifically, it compares single-threaded and multi-threaded CPU versions with GPU implementations, and characterize the execution time, true instant power and average energy consumption to test the idea that GPUs are power-hungry computing devices.","PeriodicalId":188846,"journal":{"name":"J. Comput. Sci. Technol.","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127488205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-agent Learning by Trial and Error for Resource Leveling during Multi-Project (Re)scheduling","authors":"Laura Tosselli, Verónica Bogado, E. Martínez","doi":"10.24215/16666038.18.E14","DOIUrl":"https://doi.org/10.24215/16666038.18.E14","url":null,"abstract":"In a multi-project context within enterprise networks, reaching feasible solutions to the (re)scheduling problem represents a major challenge, mainly when scarce resources are shared among projects. The multi-project (re)scheduling must achieve the most efficient possible resource usage without increasing the prescribed project constraints, considering the Resource Leveling Problem (RLP), whose objective is to level the consumption of resources shared in order to minimize their idle times and to avoid overallocation conflicts. In this work, a multi-agent solution that allows solving the Resource Constrained Multi-project Scheduling Problem (RCMPSP) and the Resource Investment Problem is extended to incorporate indicators on agents’ payoff functions to address the Resource Leveling Problem in a decentralized and autonomous way, through decoupled rules based on Trial-and-Error approach. The proposed agent-based simulation model is tested through a set of project instances that vary in their structure, parameters, number of resources shared, etc. Results obtained are assessed through different scheduling goals, such as project total duration, project total cost and leveling resource usage. Our results are far better compared to the ones obtained with alternative approaches. This proposal shows that the interacting agents that implement decoupled learning rules find a solution which can be understood as a Nash equilibrium.","PeriodicalId":188846,"journal":{"name":"J. Comput. Sci. Technol.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128957920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Tarifa, Sergio L. Martínez, S. F. Domínguez, Jorgelina F. Argañaraz
{"title":"Formulation of an optimal academic exam","authors":"E. Tarifa, Sergio L. Martínez, S. F. Domínguez, Jorgelina F. Argañaraz","doi":"10.24215/16666038.18.E19","DOIUrl":"https://doi.org/10.24215/16666038.18.E19","url":null,"abstract":"The aim of this paper is to formulate an optimal academic exam for a given subject. To do this, the probability is first modelled of a student passing the exam according to the number of units he studies and the professor evaluates. That simulation model is developed by performing a probabilistic analysis. An optimal exam is then defined as the one that awards the grade that the student deserves. Therefore, in an optimal exam, approve those who deserve to approve, and disapprove those that do not deserve to approve. Besides, this exam must respect the limitations of time and effort that the professor imposes. Based on this definition and using the simulation model, an INLP type optimization model is formulated. This optimization model determines the number of units the professor must evaluate to maximize the probability of getting an optimal exam.","PeriodicalId":188846,"journal":{"name":"J. Comput. Sci. Technol.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125582486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}